How to find cases of overlap/not in overlap , mathematically

  • Thread starter Thread starter rajemessage
  • Start date Start date
  • Tags Tags
    Overlap
AI Thread Summary
To determine the number of states for the variables (x, y) and (a, b), it's essential to recognize that each pair can exist in one of three states: less than, equal to, or greater than. With four variables, there are six relationships to consider: x and y, x and a, x and b, y and a, y and b, and a and b. Each relationship can take on three possible values, leading to a total of 729 combinations. However, not all combinations are valid due to inherent constraints, such as if x is less than y and a is less than x, then y cannot be less than a. Analyzing these relationships mathematically can help identify valid states and overlaps.
rajemessage
Messages
13
Reaction score
0
hi,

I have four variables (x and y),(a and b). i want to find out number of state which these variables can attain.

Example :
1) x=2 ,y =5 , a= 0 , b=2 ( that is a and b is less than x and y)
2) x=2 ,y =5 , a= 0 , b=2 ( that is a is less than x and b equal to x)
3) x=2 ,y =5 , a= 0 , b=3 ( that is a is less than x and b greater than x and less than y)
4) x=2 ,y =5 , a= 3 , b=4 ( that is a and be is in side x and y)
etc.
etc.
q1) is there any mathematical way to find all cases/state?

yours sincerley
 
Mathematics news on Phys.org
There is. First of all, two variables can be in one of three states: x<y, x=y, x>y. This is called the Law of Trichotomy. Next, considering that we have four variables, how many relationships are there? Well, I count 6: x and y, x and a, x and b, y and a, y and b, a and b. There are six relationships, and each relationship can be one of three possibilities. So how many total possibilities are there?
 
Ackbach said:
how many relationships are there? Well, I count 6: x and y, x and a, x and b, y and a, y and b, a and b. There are six relationships, and each relationship can be one of three possibilities.
I don't think all $3^6$ possibilities are realized. For example, if $x<y$ and $a<x$, then it can't be that $y<a$.
 
Evgeny.Makarov said:
I don't think all $3^6$ possibilities are realized. For example, if $x<y$ and $a<x$, then it can't be that $y<a$.

Absolutely! I do think this is the place to start, though. You could list out those $729$ possibilities (quite a chore, really), and check each one for consistency. Hmm. Is there an easier way, do you think?
 
Ackbach said:
I do think this is the place to start, though.
Frankly, I don't see how to use the idea that there are six pairs of variables, and each of them can be of at most three types. I may be missing something, though.
 
Ackbach said:
There is. First of all, two variables can be in one of three states: x<y, x=y, x>y. This is called the Law of Trichotomy. Next, considering that we have four variables, how many relationships are there? Well, I count 6: x and y, x and a, x and b, y and a, y and b, a and b. There are six relationships, and each relationship can be one of three possibilities. So how many total possibilities are there?

x<=y and a<=b
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top