How to find cases of overlap/not in overlap , mathematically

  • Context: Undergrad 
  • Thread starter Thread starter rajemessage
  • Start date Start date
  • Tags Tags
    Overlap
Click For Summary
SUMMARY

The discussion focuses on determining the number of possible states for four variables (x, y, a, b) based on their relationships. The Law of Trichotomy establishes that each pair of variables can exist in one of three states: xy. With six relationships among the variables, the total number of combinations is calculated as $3^6$, equating to 729 possibilities. However, not all combinations are valid due to inherent constraints between the variables.

PREREQUISITES
  • Understanding of the Law of Trichotomy
  • Familiarity with mathematical relationships and inequalities
  • Basic knowledge of combinatorial mathematics
  • Ability to analyze variable states and constraints
NEXT STEPS
  • Explore combinatorial analysis techniques for variable relationships
  • Study the implications of the Law of Trichotomy in mathematical proofs
  • Learn about constraint satisfaction problems in mathematics
  • Investigate methods for systematically listing and validating combinations
USEFUL FOR

Mathematicians, data analysts, and anyone interested in combinatorial logic and variable relationship analysis will benefit from this discussion.

rajemessage
Messages
13
Reaction score
0
hi,

I have four variables (x and y),(a and b). i want to find out number of state which these variables can attain.

Example :
1) x=2 ,y =5 , a= 0 , b=2 ( that is a and b is less than x and y)
2) x=2 ,y =5 , a= 0 , b=2 ( that is a is less than x and b equal to x)
3) x=2 ,y =5 , a= 0 , b=3 ( that is a is less than x and b greater than x and less than y)
4) x=2 ,y =5 , a= 3 , b=4 ( that is a and be is in side x and y)
etc.
etc.
q1) is there any mathematical way to find all cases/state?

yours sincerley
 
Mathematics news on Phys.org
There is. First of all, two variables can be in one of three states: x<y, x=y, x>y. This is called the Law of Trichotomy. Next, considering that we have four variables, how many relationships are there? Well, I count 6: x and y, x and a, x and b, y and a, y and b, a and b. There are six relationships, and each relationship can be one of three possibilities. So how many total possibilities are there?
 
Ackbach said:
how many relationships are there? Well, I count 6: x and y, x and a, x and b, y and a, y and b, a and b. There are six relationships, and each relationship can be one of three possibilities.
I don't think all $3^6$ possibilities are realized. For example, if $x<y$ and $a<x$, then it can't be that $y<a$.
 
Evgeny.Makarov said:
I don't think all $3^6$ possibilities are realized. For example, if $x<y$ and $a<x$, then it can't be that $y<a$.

Absolutely! I do think this is the place to start, though. You could list out those $729$ possibilities (quite a chore, really), and check each one for consistency. Hmm. Is there an easier way, do you think?
 
Ackbach said:
I do think this is the place to start, though.
Frankly, I don't see how to use the idea that there are six pairs of variables, and each of them can be of at most three types. I may be missing something, though.
 
Ackbach said:
There is. First of all, two variables can be in one of three states: x<y, x=y, x>y. This is called the Law of Trichotomy. Next, considering that we have four variables, how many relationships are there? Well, I count 6: x and y, x and a, x and b, y and a, y and b, a and b. There are six relationships, and each relationship can be one of three possibilities. So how many total possibilities are there?

x<=y and a<=b
 

Similar threads

  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
2K