- #1
- 101
- 5
OP warned about not using the homework template
defind ## \hat{A}f(x)=f(-x) ## find eigenfunction and eigenvalue
I think
## \frac{d}{dx} ( \hat{A}f(x) ) = \frac{d}{dx} f(-x) ##
## \hat{A} \frac{d}{dx}f(x) + f(x) \frac{d}{dx} \hat{A} = -\frac{d}{dx} f(x)##
## \hat{A} \frac{d}{dx}f(x) + \frac{d}{dx} f(x) = -f(x) \frac{d}{dx} \hat{A}##
## (\hat{A} + 1)\frac{d}{dx} f(x) = -f(x) \frac{d}{dx} \hat{A}##
multiply by ## dx ##
## (\hat{A} + 1)d{f(x)} = -f(x) d{ \hat{A} }##
## ∫ \frac{1}{f(x)}d f(x) = - ∫ \frac{1}{\hat{A} + 1}d \hat{A}##
## \ln{f(x)} = -\ln{(\hat{A}+1)}+\ln{c} ##
## \ln{f(x)} = \ln(\frac{c}{\hat{A}+1}) ##
so...
## f(x) = \frac{c}{\hat{A}+1} ## i think it's wrong
I think
## \frac{d}{dx} ( \hat{A}f(x) ) = \frac{d}{dx} f(-x) ##
## \hat{A} \frac{d}{dx}f(x) + f(x) \frac{d}{dx} \hat{A} = -\frac{d}{dx} f(x)##
## \hat{A} \frac{d}{dx}f(x) + \frac{d}{dx} f(x) = -f(x) \frac{d}{dx} \hat{A}##
## (\hat{A} + 1)\frac{d}{dx} f(x) = -f(x) \frac{d}{dx} \hat{A}##
multiply by ## dx ##
## (\hat{A} + 1)d{f(x)} = -f(x) d{ \hat{A} }##
## ∫ \frac{1}{f(x)}d f(x) = - ∫ \frac{1}{\hat{A} + 1}d \hat{A}##
## \ln{f(x)} = -\ln{(\hat{A}+1)}+\ln{c} ##
## \ln{f(x)} = \ln(\frac{c}{\hat{A}+1}) ##
so...
## f(x) = \frac{c}{\hat{A}+1} ## i think it's wrong