How to find f'(0) from a left handed limit? (multiple questions)

  • Thread starter Thread starter arbrelibre
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
To find f'(0) for the piecewise function f(x) = -6x^2 + 6x for x < 0 and 7x^2 - 3 for x ≥ 0, both left-hand and right-hand limits must be computed. The right-hand limit evaluates to 0, leading to f'(0) being undefined (DNE) due to the left-hand limit yielding a different value. For the second question, the values from the table can be used to calculate f'(0.0099) accurately with basic arithmetic. The third question involves simplifying the derivative expression for f(x) = 2/(x-8) and requires careful handling of limits as t approaches x. The discussion emphasizes the need for detailed steps in limit calculations to clarify misunderstandings.
arbrelibre
Messages
2
Reaction score
0
My homework is due really soon.
Here are all the questions I have absolutely NO idea how to do.


1.
Let:
f(X) = -6x^2+6x for x<0 and 7x^2-3 for x≥ 0

According to the definition of derivative, to computer f'(0), we need to compute the left hand limit
lim x-->0- =
and the right hand limit
lim x--> 0+
We conclude that f'(0)=

So...
I've figured out that the right hand limit is
[7x^2-3-(7(0)^2-3)]/(x-0)
and that f'(0)=DNE

My answer for the left hand limit is
[-6x^2+6x-(-6(0)^2+6(0))]/(x-0)
but the website won't accept my answer.

2.
Given the following table:

x----- 0.0097 ------- 0.0098 -------- 0.0099 -------- 0.01---- 0.0101 ----- 0.0101
f(x)-- 0.54783494--0.99814343 -- 0.46101272-- (-0.50636564)---- (-.9987636)

Calculate the value of f'(0.0099) to two place of accuracy.

3.
Let f(x) = 2/(x-8)
According to the definition of derivative, f'(x)= lim t-->x (2(x-8)-2(t-8))/((t-x)(t-8)(x-8))
The expression inside the limit simplifies to: 2/[-(x-8)/(t-8)]
Taking the limit of this fractional expression gives us
f′(x)= ?

Please, please, please help me. I am SO frustrated.

Thanks!
 
Physics news on Phys.org
arbrelibre said:
My homework is due really soon.
Here are all the questions I have absolutely NO idea how to do.


1.
Let:
f(X) = -6x^2+6x for x<0 and 7x^2-3 for x≥ 0

According to the definition of derivative, to computer f'(0), we need to compute the left hand limit
lim x-->0- =
and the right hand limit
lim x--> 0+
We conclude that f'(0)=

So...
I've figured out that the right hand limit is
[7x^2-3-(7(0)^2-3)]/(x-0)
and that f'(0)=DNE
Wrong. Fill in the missing steps.
 
haruspex said:
Wrong. Fill in the missing steps.

What do you mean 'missing steps'?
 
arbrelibre said:
Let:
f(X) = -6x^2+6x for x<0 and 7x^2-3 for x≥ 0

According to the definition of derivative, to computer f'(0), we need to compute the left hand limit
lim x-->0- =
and the right hand limit
lim x--> 0+
We conclude that f'(0)=

So...
I've figured out that the right hand limit is
[7x^2-3-(7(0)^2-3)]/(x-0)
and that f'(0)=DNE
Pleae write out the steps between those last two statements so that I can see where you are going wrong.
 
arbrelibre said:
My homework is due really soon.
Here are all the questions I have absolutely NO idea how to do.


1.
Let:
f(X) = -6x^2+6x for x<0 and 7x^2-3 for x≥ 0

According to the definition of derivative, to computer f'(0), we need to compute the left hand limit
lim x-->0- =
and the right hand limit
lim x--> 0+
We conclude that f'(0)=

So...
I've figured out that the right hand limit is
[7x^2-3-(7(0)^2-3)]/(x-0)
and that f'(0)=DNE
You are being far too "casual". What is "7x^2- 3- (7(0)^2- 3)" Actually write that out in detail.

My answer for the left hand limit is
[-6x^2+6x-(-6(0)^2+6(0))]/(x-0)
but the website won't accept my answer.
I don't see an answer! You haven't yet taken the limit.

2.
Given the following table:

x----- 0.0097 ------- 0.0098 -------- 0.0099 -------- 0.01---- 0.0101 ----- 0.0101
f(x)-- 0.54783494--0.99814343 -- 0.46101272-- (-0.50636564)---- (-.9987636)

Calculate the value of f'(0.0099) to two place of accuracy.
Okay, what have you done? Since you clearly know the formula, it's just a matter of arithmetic.

3.
Let f(x) = 2/(x-8)
According to the definition of derivative, f'(x)= lim t-->x (2(x-8)-2(t-8))/((t-x)(t-8)(x-8))
Where did you get that?

If f(x)=
The expression inside the limit simplifies to: 2/[-(x-8)/(t-8)]
Taking the limit of this fractional expression gives us
f′(x)= ?
As t goes to x, what is \frac{x- 8}{t- 8}?

Please, please, please help me. I am SO frustrated.

Thanks!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K
Replies
3
Views
1K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K