Oblio
- 398
- 0
A uniform sheet of metal is cut in the shape of a semicircle of radius R and lies in the xy plane with its center at the origin and diameter lying along the x axis. Find the position of the CM using polar coordinates. (Center of mass).
[In this case the sum that defines the CM position becomes a two-D integral of the form \intr\sigmadA where \sigma denotes the surface mass density (mass/area) of the sheet and dA is the element of area dA= rdrd\phi.]
Ok I thought I knew how to start this before I read the bracketed section...
Could I get a hint on starting this with polar coordinates (never done this actually...) and why is the bracketed section even necessary?
Thanks a lot!
[In this case the sum that defines the CM position becomes a two-D integral of the form \intr\sigmadA where \sigma denotes the surface mass density (mass/area) of the sheet and dA is the element of area dA= rdrd\phi.]
Ok I thought I knew how to start this before I read the bracketed section...
Could I get a hint on starting this with polar coordinates (never done this actually...) and why is the bracketed section even necessary?
Thanks a lot!