How to find the constant B in here?

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Constant
Click For Summary

Homework Help Overview

The discussion revolves around determining the constant B in the context of a mathematical proof involving the sum of divisors function and its relationship to the Riemann zeta function, specifically focusing on the value of B as it relates to \(\zeta(2)^2\) and its simplifications.

Discussion Character

  • Conceptual clarification, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants explore whether B can simply be taken as \(\zeta(2)^2\) or if further evaluation is necessary, such as substituting it with \(\frac{\pi^2}{6}\). There are discussions about the implications of constants in the context of the proof and whether they can be interchanged.

Discussion Status

The discussion is active, with participants questioning the sufficiency of \(\zeta(2)^2\) as the value for B and exploring its equivalence to other forms. There is a recognition of differing interpretations regarding the constants involved, particularly in relation to \(\zeta(4)\) and the calculations leading to \(\frac{\pi^4}{36}\).

Contextual Notes

Participants are navigating through the relationships between various zeta function values and their implications for the constant B, with some confusion noted regarding the equality of \(\zeta(2)^2\) and \(\zeta(4)\). There is also mention of potential errors in notation and simplifications that could affect the interpretation of the constants.

Math100
Messages
823
Reaction score
234
Homework Statement
Prove that, for ## x\geq 2 ##, ## \sum_{n\leq x}\frac{d(n)}{n^2}=B-\frac{\log x}{x}+O(\frac{1}{x}) ##, where ## B ## is a constant that you should determine.
Relevant Equations
If ## x\geq 2 ## and ## \alpha>0, \alpha\neq 1 ##, then ## \sum_{n\leq x}\frac{d(n)}{n^{\alpha}}=\frac{x^{1-\alpha}\log {x}}{1-\alpha}+\zeta (\alpha)^2+O(x^{1-\alpha}) ##.
Proof:

Let ## x\geq 2 ##.
Observe that
\begin{align*}
&\sum_{n\leq x}\frac{d(n)}{n^2}=\sum_{d\leq x}\frac{1}{d^2}\sum_{q\leq \frac{x}{d}}\frac{1}{q^2}\\
&=\sum_{d\leq x}\frac{1}{d^2}(\frac{(x/d)^{1-2}}{1-2}+\zeta {2}+O(\frac{1}{(x/d)^{2}}))\\
&=\frac{x^{1-2}}{1-2}\sum_{d\leq x}\frac{1}{d}+\zeta (2)\sum_{d\leq x}\frac{1}{d^2}+O(x^{1-2})\\
&=\frac{x^{1-2}}{1-2}(\log {x}+C+O(\frac{1}{x}))+\zeta {2}(\frac{x^{1-2}}{1-2}+\zeta {2}+O(x^{-2}))+O(x^{1-2}))\\
&=\frac{x^{1-2}\log {x}}{1-2}+C\cdot \frac{x^{1-2}}{1-2}+O(x^{-2})+\zeta (2)\cdot \frac{x^{1-2}}{1-2}+\zeta (2)^2+O(x^{-2})+O(x^{1-2})\\
&=\frac{x^{1-2}\log {x}}{1-2}+\zeta (2)^2+O(x^{1-2}).\\
\end{align*}
Thus ## \sum_{n\leq x}\frac{d(n)}{n^2}=B-\frac{\log {x}}{x}+O(\frac{1}{x}) ##, where ## B=\zeta (2)^2 ##.
Therefore, ## \sum_{n\leq x}\frac{d(n)}{n^2}=\zeta (2)^2-\frac{\log {x}}{x}+O(\frac{1}{x}) ## for ## x\geq 2 ##.
 
Physics news on Phys.org
Is B = \zeta(2)^2 not sufficient, or do you need to use the standard result <br /> \zeta(2) = \sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6}?
 
pasmith said:
Is B = \zeta(2)^2 not sufficient, or do you need to use the standard result <br /> \zeta(2) = \sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6}?
This was my question. How should I determine the constant ## B ## in here? Is ## \zeta (2)^2 ## really sufficient? Or do I need to simplify/evaluate this value more, into ## \frac{\pi^{2}}{6} ##?
 
Math100 said:
This was my question. How should I determine the constant ## B ## in here? Is ## \zeta (2)^2 ## really sufficient? Or do I need to simplify/evaluate this value more, into ## \frac{\pi^{2}}{6} ##?
I would normally substitute it with ##\pi^2/6## in the final answer. But here we have a ##B## that swallows all constants wherever they come from, so there is no need for the substitution, a constant is a constant, no matter which. However, you should write ##-1## and not ##1-2.##
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
I would normally substitute it with ##\pi^2/6## in the final answer. But here we have a ##B## that swallows all constants wherever they come from, so there is no need for the substitution, a constant is a constant, no matter which. However, you should write ##-1## and not ##1-2.##
So ## \zeta (2)^2=\zeta (4)=\sum_{n=1}^{\infty}\frac{1}{n^4}=\frac{\pi^{4}}{90} ##? And ## B=\frac{\pi^{4}}{90} ##?
 
Math100 said:
So ## \zeta (2)^2=\zeta (4)=\sum_{n=1}^{\infty}\frac{1}{n^4}=\frac{\pi^{4}}{90} ##? And ## B=\frac{\pi^{4}}{90} ##?
## \zeta (2)^2=\dfrac{\pi^4}{36}\neq \dfrac{\pi^4}{90}=\zeta (4).##
 
fresh_42 said:
## \zeta (2)^2=\dfrac{\pi^4}{36}\neq \dfrac{\pi^4}{90}=\zeta (4).##
Why ## \frac{\pi^{4}}{36} ##?
 
Math100 said:
Why ## \frac{\pi^{4}}{36} ##?
Because ##\zeta(2)^2=\left(\dfrac{\pi^2}{6}\right)^2=\dfrac{\pi^4}{6\cdot 6}.##
 
  • Like
Likes   Reactions: Math100

Similar threads

Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
2
Views
2K