- #1

- 11

- 0

## Homework Statement

Find dy/dx of this:

Assume p>0, y=(p^(x^p))(x^p)

## Homework Equations

1. d/dx f(x)g(x)h(x) = f'(x)g(x)h(x)+f(x)g'(x)h(x)+f(x)g(x)h'(x)

## The Attempt at a Solution

ln(y)= p(ln(p^x))x^p

1/y y'=p'(ln(p^x))x^p + p(logp)x^p + p(ln(p^x))px^(p-1) --use "revlevent" equation

1/y y'= 0 + plogp(x^p) + p(ln(p^x))px^(p-1) -- simplify derivatives

y'= y(plogp(x^p) + p(ln(p^x))px^(p-1)) -- multiply both sides by y

y'= (p^(x^p))(x^p)(plogp(x^p) + p(ln(p^x))px^(p-1)) -- sub in y from beginning

Can someone point out where my error is, and how to fix it?

Thanks