I How to find the generator of this Lie group?

Haorong Wu
Messages
417
Reaction score
90
TL;DR
How to find the generator of this Lie group?
Hello, there. Consider a Lie group operating in a space with points ##X^\iota##. Its elements ##\gamma [ N^i]## are labeled by continuous parameters ##N^i##. Let the action of the group on the space be ##\gamma [N^i] X^\iota=\bar X^\iota (X^\kappa, N^i)##. Then the infinitesimal transformation is given by $$\gamma[\delta N^i]X^\iota=X^\iota+\left . \frac {\partial \bar X^\iota (X^\kappa, N^i)}{\partial N^i} \right |_{N^i=0}\delta N^i=X^\iota+\xi^\iota_i(X^\kappa) \delta N^i$$ in the neighborhood of the identity ##N^i=0##. According to the paper, the generators of the Lie group is ##X_i=\xi^\iota_i (X^\kappa) \frac \partial {\partial X^\iota}## I do not see how to get this conclusion. I thought the genrator should be ##\xi^\iota_i(X^\kappa) ## itself. Is it related to the fact that the genrator is a vector, and ##\frac \partial {\partial X^\iota}## is merely the basis vector as in the differential geometry?

Thanks!
 
Physics news on Phys.org
Haorong Wu said:
Summary:: How to find the generator of this Lie group?

Is it related to the fact that the generator is a vector, and ##\frac \partial {\partial X^\iota}## is merely the basis vector as in the differential geometry?
Yes. We have to have ##n## coordinates over all ##\iota##.
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 3 ·
Replies
3
Views
630
  • · Replies 26 ·
Replies
26
Views
587
  • · Replies 4 ·
Replies
4
Views
269
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
Replies
3
Views
2K