Undergrad How to find the maximum arc length of this equation?

Click For Summary
SUMMARY

The discussion focuses on finding the maximum arc length of the equation defined by the relationship ##{^{\infty}x}+{^{\infty}y}={^{\infty}r}## using the Lambert W function. The user attempts to graph the equation in Desmos but encounters performance issues, leading to the need for an alternative method to calculate arc length. The user seeks assistance in rearranging the equation to isolate ##y## or finding another method to evaluate the arc length of the curve defined by the equation. The notation used in the discussion refers to Tetration, specifically Kunth's double up arrow notation.

PREREQUISITES
  • Understanding of the Lambert W function and its applications.
  • Familiarity with Tetration and its notation.
  • Knowledge of calculus, specifically derivatives and arc length formulas.
  • Experience with graphing tools like Desmos for visualizing mathematical functions.
NEXT STEPS
  • Learn how to manipulate the Lambert W function for different equations.
  • Study methods for calculating arc length in polar coordinates.
  • Explore advanced graphing techniques in Desmos to improve performance.
  • Research Tetration and its implications in higher mathematics.
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced mathematical functions and their graphical representations.

Saracen Rue
Messages
150
Reaction score
10
TL;DR
How do you find the maximum arc length of ##{^{\infty}x}+{^{\infty}y}={^{\infty}r}## and the value of ##r## at which it occurs?
After seeing a discussion about graphs of the relationship ##x^x + y^y = r^r##, it got me interested in attempting to see what the graphical appearance of ##{^{\infty}x}+{^{\infty}y}={^{\infty}r}## would look like. The first step I did was use the relationship of ##{^{\infty}n}=-\frac{W(-\ln(n))}{\ln(n)}## to give me the equation of:
$$-\frac{W(-\ln(x))}{\ln(x)} -\frac{W(-\ln(y))}{\ln(y)} = -\frac{W(-\ln(r))}{\ln(r)} $$

Where the range of possible real values for ##r## is ##e^{−e} < r < e^{1/e}##.
Using this I attempted to define the Lambert W function inside of Desmos using
$$\text{}$$
$$W\left(x\right)=-\frac{2}{\pi}\int_{0}^{\pi}\frac{\sin\left(\frac{t}{2}\right)\left(\sin\left(\frac{3t}{2}\right)+e^{\cos\left(t\right)}x\sin\left(\frac{5t}{2}-\sin\left(t\right)\right)\right)}{1+e^{2\cos\left(t\right)}x^{2}+2e^{\cos\left(t\right)}x\cos\left(t-\sin\left(t\right)\right)}dt\left\{-\frac{1}{e}<x<e\right\}$$
$$\text{}$$

and from there try to graph ##-\frac{W(-\ln(x))}{\ln(x)} -\frac{W(-\ln(y))}{\ln(y)} = -\frac{W(-\ln(r))}{\ln(r)} ##, in the hopes of being able to get a rough idea of what value of ##r## gives the greatest arc length. However, Desmos was extremely laggy and any change in the value of ##r## would take over a minute to be reflected by the graph.

This would take far too long to reasonably do so instead I decided to try to find a way to define a new function as being the arc length of the equation ##-\frac{W(-\ln(x))}{\ln(x)} -\frac{W(-\ln(y))}{\ln(y)} = -\frac{W(-\ln(r))}{\ln(r)} ##, get the derivative of said new function and solve for when the derivative equals zero to get the value of ##r## that produces the maximum arc length.

However, at this point I encountered another problem. The only way I know how to calculate the length of a curve is by using the formula ##\int_a^b \sqrt{1+(\frac{dy}{dx})^2} dx## for Cartesian coordinates and ##\int_{\theta_1}^{\theta_2} \sqrt{r^2+(\frac{dr}{d\theta})^2} d\theta## for polar coordinates, but the prior isn't useful without rearranging for ##y## to be the subject and the latter isn't useful as I'm unsure of how to rearrange into the form ##r=f(\theta)## after converting this particular equation to polar coordinates.

So, to summarize, I would very much appreciate if someone could help by telling me if there's a way to make ##y## the subject in ##-\frac{W(-\ln(x))}{\ln(x)} -\frac{W(-\ln(y))}{\ln(y)} = -\frac{W(-\ln(r))}{\ln(r)} ## or if there's an alternate method I could use to evaluate the arc length of this curve.
 
Physics news on Phys.org
Whatever your notation means, the only alternative I see is to rectify the curve and sum up the polygon lengths.
 
Saracen Rue said:
Summary:: How do you find the maximum arc length of ##{^{\infty}x}+{^{\infty}y}={^{\infty}r}## and the value of ##r## at which it occurs?
What is the notation ##^{\infty}x## supposed to mean? Keep in mind that ##\infty## can't be used in arithmetic or algebraic expressions.
 
  • Like
Likes jim mcnamara
Mark44 said:
What is the notation ##^{\infty}x## supposed to mean? Keep in mind that ##\infty## can't be used in arithmetic or algebraic expressions.
The notation being used is Tetration; another way of expressing Kunths double up arrow notation: ##{ ^{\infty}n}=n \uparrow \uparrow \infty =## x^x^x^{.}^{.}^{.} (An infinitely tall power tower).

You can read more about tetration here: https://en.m.wikipedia.org/wiki/Tetration

And you can read more about power towers here: http://mathworld.wolfram.com/PowerTower.html
 
Relativistic Momentum, Mass, and Energy Momentum and mass (...), the classic equations for conserving momentum and energy are not adequate for the analysis of high-speed collisions. (...) The momentum of a particle moving with velocity ##v## is given by $$p=\cfrac{mv}{\sqrt{1-(v^2/c^2)}}\qquad{R-10}$$ ENERGY In relativistic mechanics, as in classic mechanics, the net force on a particle is equal to the time rate of change of the momentum of the particle. Considering one-dimensional...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K