How to find the Moment of Inertia for a Sphero robot?

Click For Summary

Discussion Overview

The discussion revolves around designing an experiment to determine the moment of inertia of a Sphero robot. Participants explore methods for measuring the moment of inertia through the robot's motion down an incline, considering energy conservation principles and the robot's rolling behavior.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant suggests getting the Sphero to roll down an incline without slipping and report its speed at the bottom to measure the moment of inertia.
  • Another participant elaborates on using energy conservation to relate potential energy to kinetic and rotational energy, providing a formula to calculate a constant fraction related to the moment of inertia.
  • A participant emphasizes the importance of ensuring there is no slipping during the experiment.
  • There is a discussion about whether the center of mass (CM) of the Sphero is at its geometric center, noting that this could complicate the determination of the moment of inertia.
  • One participant raises a question about the robot's rotation, speculating on whether it remains level while the shell rotates and how internal forces might affect the moment of inertia measurement.

Areas of Agreement / Disagreement

Participants express varying views on the implications of the Sphero's design on the moment of inertia measurement, with some agreeing on the experimental approach while others question the assumptions regarding the center of mass and rotation. The discussion remains unresolved regarding the exact nature of the Sphero's motion and its impact on the moment of inertia.

Contextual Notes

Participants note potential complications due to the Sphero's internal mechanics and the position of its center of mass, which may affect the accuracy of the moment of inertia determination.

GopherTv
Messages
7
Reaction score
1
TL;DR
A Sphero is a programable robot that has a Moment of inertia somewhere between 2/3MR^2 (Thin spherical shell) and 2/5MR^2 (Solid Sphere)
What kind of experiment can I design to determine the actual value of the moment of inertia. What should I instruct the sphero to do and what data should I collect?
 

Attachments

  • 1651112198259.png
    1651112198259.png
    109 KB · Views: 141
Physics news on Phys.org
Get it to roll without slipping down an incline starting from rest and have it report its speed at the bottom of the incline. Energy conservation says that for a vertical drop ##h## the potential energy is converted into kinetic energy of the center of mass and rotational energy about the center of mass,$$mgh=\frac{1}{2}mV_{\text{cm}}^2+\frac{1}{2}I_{\text{cm}}\omega^2.$$As you noted, you can write the moment of inertia about the CoM as ##I_{\text{cm}}=qmR^2## where ##q## is the constant fraction that you want to determine. If this thing rolls without slipping, ##\omega =\dfrac{V_{\text{cm}}}{R}## in which case the energy conservation equation becomes $$mgh=\frac{1}{2}mV_{\text{cm}}^2+\frac{1}{2}(qmR^2)\left( \frac{V_{\text{cm}}}{R}\right)^2.$$After the obvious cancellations you get $$gh=\frac{1}{2}V_{\text{cm}}^2+\frac{1}{2}qV_{\text{cm}}^2\implies q=\frac{2gh}{V_{\text{cm}}^2}-1.$$So all you have to do is measure the vertical height by which it drops and have it tell you how fast it is moving after it drops by that height and plug in. Its mass or radius don't matter with this technique. This is counterintuitive when what you are trying to determine is its moment of inertia but there you have it. Just make sure there is no slipping.
 
  • Like
Likes   Reactions: berkeman
kuruman said:
Just make sure there is no slipping.
And that it rolls down without power
 
Last edited:
  • Like
Likes   Reactions: kuruman
Ok, this makes sense, i appreciate the help.

Thanks!
 
  • Like
Likes   Reactions: berkeman
kuruman said:
Get it to roll without slipping down an incline starting from rest and have it report its speed at the bottom of the incline. Energy conservation says that for a vertical drop ##h## the potential energy is converted into kinetic energy of the center of mass and rotational energy about the center of mass,$$mgh=\frac{1}{2}mV_{\text{cm}}^2+\frac{1}{2}I_{\text{cm}}\omega^2.$$As you noted, you can write the moment of inertia about the CoM as ##I_{\text{cm}}=qmR^2## where ##q## is the constant fraction that you want to determine. If this thing rolls without slipping, ##\omega =\dfrac{V_{\text{cm}}}{R}## in which case the energy conservation equation becomes $$mgh=\frac{1}{2}mV_{\text{cm}}^2+\frac{1}{2}(qmR^2)\left( \frac{V_{\text{cm}}}{R}\right)^2.$$After the obvious cancellations you get $$gh=\frac{1}{2}V_{\text{cm}}^2+\frac{1}{2}qV_{\text{cm}}^2\implies q=\frac{2gh}{V_{\text{cm}}^2}-1.$$So all you have to do is measure the vertical height by which it drops and have it tell you how fast it is moving after it drops by that height and plug in. Its mass or radius don't matter with this technique. This is counterintuitive when what you are trying to determine is its moment of inertia but there you have it. Just make sure there is no slipping.
The CM might not be in the center of the sphere ( its axis of rotation) as it is in a solid sphere or shell with uniform density which I think adds another parameter to finding the MOI, thus making this inconclusive?

Does the robot itself rotate, or does it remain "level" while the shell rotates?

EDIT:
From what I can tell, the shell rotates, the "bot" driving it tries not to. So, if its rolling down a hill ( and it its on ) it is actively applying forces to the shell through it rollers to maintain it orientation. These forces ( and other internal rotating components ) are probably the reason the MOI appears to be between the shell and the solid sphere.
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 49 ·
2
Replies
49
Views
5K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 67 ·
3
Replies
67
Views
7K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K