How to find the partition function of the 1D Ising model?

Dom Tesilbirth
Messages
4
Reaction score
1
Homework Statement
Consider a one-dimensional Ising model with ##N## spins at very low temperature. Let there be ##r## spin flips with each costing energy ##2J##. The total energy of the system is ##E=-NJ+2rJ## and the number of configurations is ##C(N, r)##, where ##r## varies from ##0## to ##N##. Find the partition function.
Relevant Equations
##E=-NJ+2rJ## and
##Z=\sum ^{N}_{r=0}C\left( N,r\right) e^{-\beta \left[ -NJ+2rJ\right] }##
Attempt at a solution:

\begin{aligned}Z=\sum ^{N}_{r=0}C\left( N,r\right) e^{-\beta \left[ -NJ+2rJ\right] }\\
\Rightarrow Z=e^{\beta NJ}\sum ^{N}_{r=0}C\left( N,r\right) e^{-2\beta rJ}\end{aligned}

Let ##e^{-2\beta J}=x##. Then ##e^{-2\beta rJ}=x^{r}##.

\begin{aligned}\therefore Z=e^{\beta NJ}\sum ^{N}_{r=0}C(N, r)x^{r}\\
\Rightarrow Z=e^{\beta NJ}\left( 1+x\right) ^{N}=\left( e^{\beta J}+e^{\beta J}e^{-2\beta J}\right) ^{N}\\
\Rightarrow Z=\left( e^{\beta J}+e^{-\beta J}\right) ^{N}\\
\Rightarrow Z=\left( 2\cosh\beta J\right) ^{N}\end{aligned}

However, the answer provided is ##Z=\left(\cosh \beta J\right) ^{N}##. How do we remove the factor ##2##? Was the given answer wrong, or is there something that I still need to do?
 
Physics news on Phys.org
Dom Tesilbirth said:
How do we remove the factor ##2##? Was the given answer wrong, or is there something that I still need to do?
Factor 2 seems to be right.

ref. https://en.wikipedia.org/wiki/Ising_model
 
  • Like
Likes Dom Tesilbirth
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top