How to find the straight tangent line?

Click For Summary
SUMMARY

The discussion centers on finding the straight tangent line and its relationship with the tangent plane in two dimensions. The user initially calculated the tangent plane as 4x + 2y - 6 = 0, correcting a previous error. It was clarified that in two dimensions, the tangent line and tangent plane are effectively the same, while in higher dimensions, the tangent plane is a more general concept with n-1 dimensions.

PREREQUISITES
  • Understanding of gradient calculations in calculus
  • Familiarity with the concept of tangent lines and tangent planes
  • Basic knowledge of algebraic equations
  • Concept of dimensions in mathematical contexts
NEXT STEPS
  • Study the relationship between tangent lines and tangent planes in calculus
  • Explore gradient calculations in multivariable calculus
  • Learn about the geometric interpretation of derivatives
  • Investigate the concept of dimensions in mathematical spaces
USEFUL FOR

Students of calculus, mathematicians, and educators looking to deepen their understanding of tangent lines and planes in both two and higher dimensions.

Helloooo
Messages
6
Reaction score
0
Homework Statement
Find the straight tangent line at (2,-1) to the level curve of f(x,y)=x^2-y^2
Relevant Equations
f(x,y)=x^2-y^2
Point: (2,-1)
I have solved the gradient:

gradf(2,-1)=(4,2)

and have the tangent plane:

4x+2y+3=0

Somehow the answer is:

3=2x+y

And i really don´t understand why.
 
Physics news on Phys.org
Helloooo said:
and have the tangent plane:

4x+2y+3=0
No you don’t. Inserting (2,-1) in the LHS gives 4*2+2(-1) = 8-2 = 6 so the required point is not on that plane.
 
Orodruin said:
No you don’t. Inserting (2,-1) in the LHS gives 4*2+2(-1) = 8-2 = 6 so the required point is not on that plane.
Firstly i noticed an error in my writing.
The tangent plane i got was 4x+2y-3=0.
I´m sorry for that
So i redid the tangent plane to
4x+2y-6=0
However i still don´t know how to fint the straight tangent line.
Thank you
 
Helloooo said:
However i still don´t know how to fint the straight tangent line.
That's it, right there:
Helloooo said:
4x+2y-6=0
 
Orodruin said:
That's it, right there:
Does that mean that the tangent plane and straight tangent line is the same?
If so, why are they called differently or is it just in this particulary problem?
 
Helloooo said:
Does that mean that the tangent plane and straight tangent line is the same?
If so, why are they called differently or is it just in this particulary problem?
In two dimensions, a tangent line and the tangent plane are the same thing. In n dimensions the tangent plane has n-1 dimensions. It is a more general concept because it is not restricted to two dimensions.
 
  • Like
Likes   Reactions: Lnewqban
Orodruin said:
In two dimensions, a tangent line and the tangent plane are the same thing. In n dimensions the tangent plane has n-1 dimensions. It is a more general concept because it is not restricted to two dimensions.
I see, thank you so much for your help!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
2
Views
1K