MHB How to find the value of f'(x) at c

  • Thread starter Thread starter rahulk1
  • Start date Start date
  • Tags Tags
    Value
Click For Summary
SUMMARY

This discussion focuses on calculating the derivative of the sine and cosine functions using the limit definition of the derivative. For the function f(x) = sin(x), the derivative f'(x) is established as cos(x) at specific points such as c = π/4 and c = 3π/2. The limit process is thoroughly detailed, demonstrating how to apply the angle-sum identity and Pythagorean identities to derive the results. The discussion also addresses the limit of sin(h)/(cos(h)+1) as h approaches 0, confirming it equals 0.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with trigonometric functions: sine and cosine
  • Knowledge of the angle-sum identities for sine and cosine
  • Ability to apply the definition of the derivative
NEXT STEPS
  • Study the limit definition of derivatives in more depth
  • Learn about higher-order derivatives and their applications
  • Explore the implications of the derivative in real-world scenarios
  • Investigate the behavior of derivatives for other trigonometric functions
USEFUL FOR

Students in calculus, mathematics educators, and anyone interested in understanding the foundational concepts of derivatives and trigonometric functions.

rahulk1
Messages
13
Reaction score
0
How to find the value of f'(x) at cif

1. f(x)=sinx, c=pi/4
2. f(x)=sinx, c=3pi/2
3.2. f(x)=cosx, c=0, pi/2, pi, 3pi/2, 2pi
 
Mathematics news on Phys.org
Since you posted in the Pre-Calculus forum, I suppose you are to use the definition:

$$f'(x)\equiv\lim_{h\to0}\frac{f(x+h)-f(x)}{h}$$

So, for $f(x)=\sin(x)$, we have:

$$f'(x)\equiv\lim_{h\to0}\frac{\sin(x+h)-\sin(x)}{h}$$

Using the angle-sum identity for the sine function, we may write:

$$f'(x)=\lim_{h\to0}\frac{\sin(x)(\cos(h)-1)+\cos(x)\sin(h)}{h}$$

$$f'(x)=\sin(x)\lim_{h\to0}\frac{\cos(h)-1}{h}+\cos(x)\lim_{h\to0}\frac{\sin(h)}{h}$$

$$f'(x)=\sin(x)\lim_{h\to0}\frac{\cos^2(h)-1}{h(\cos(h)+1)}+\cos(x)\lim_{h\to0}\frac{\sin(h)}{h}$$

Using a Pythagorean identity on the first limit on the RHS, we obtain:

$$f'(x)=-\sin(x)\lim_{h\to0}\frac{\sin^2(h)}{h(\cos(h)+1)}+\cos(x)\lim_{h\to0}\frac{\sin(h)}{h}$$

$$f'(x)=-\sin(x)\lim_{h\to0}\frac{\sin(h)}{h}\cdot\lim_{h\to0}\frac{\sin(h)}{(\cos(h)+1)}+\cos(x)\lim_{h\to0}\frac{\sin(h)}{h}$$

Using the fact that $$\lim_{u\to0}\frac{\sin(u)}{u}=1$$, we have:

$$f'(x)=-\sin(x)(1)(0)+\cos(x)(1)=\cos(x)$$

Can you now obtain a result for $f(x)=\cos(x)$?
 
MarkFL said:
Since you posted in the Pre-Calculus forum, I suppose you are to use the definition:

$$f'(x)\equiv\lim_{h\to0}\frac{f(x+h)-f(x)}{h}$$

So, for $f(x)=\sin(x)$, we have:

$$f'(x)\equiv\lim_{h\to0}\frac{\sin(x+h)-\sin(x)}{h}$$

Using the angle-sum identity for the sine function, we may write:

$$f'(x)=\lim_{h\to0}\frac{\sin(x)(\cos(h)-1)+\cos(x)\sin(h)}{h}$$

$$f'(x)=\sin(x)\lim_{h\to0}\frac{\cos(h)-1}{h}+\cos(x)\lim_{h\to0}\frac{\sin(h)}{h}$$

$$f'(x)=\sin(x)\lim_{h\to0}\frac{\cos^2(h)-1}{h(\cos(h)+1)}+\cos(x)\lim_{h\to0}\frac{\sin(h)}{h}$$

Using a Pythagorean identity on the first limit on the RHS, we obtain:

$$f'(x)=-\sin(x)\lim_{h\to0}\frac{\sin^2(h)}{h(\cos(h)+1)}+\cos(x)\lim_{h\to0}\frac{\sin(h)}{h}$$

$$f'(x)=-\sin(x)\lim_{h\to0}\frac{\sin(h)}{h}\cdot\lim_{h\to0}\frac{\sin(h)}{(\cos(h)+1)}+\cos(x)\lim_{h\to0}\frac{\sin(h)}{h}$$

Using the fact that $$\lim_{u\to0}\frac{\sin(u)}{u}=1$$, we have:

$$f'(x)=-\sin(x)(1)(0)+\cos(x)(1)=\cos(x)$$

Can you now obtain a result for $f(x)=\cos(x)$?

Hi

Thanks for your suggestion

But what about c=pi/4 where are used

c=pi/4 in the answer
 
rahulk said:
Hi

Thanks for your suggestion

But what about c=pi/4 where are used

c=pi/4 in the answer

Well, if $f'(c)=\cos(c)$ and $$c=\frac{\pi}{4}$$...then what do you get?
 
MarkFL said:
Since you posted in the Pre-Calculus forum, I suppose you are to use the definition:

$$f'(x)\equiv\lim_{h\to0}\frac{f(x+h)-f(x)}{h}$$

So, for $f(x)=\sin(x)$, we have:

$$f'(x)\equiv\lim_{h\to0}\frac{\sin(x+h)-\sin(x)}{h}$$

Using the angle-sum identity for the sine function, we may write:

$$f'(x)=\lim_{h\to0}\frac{\sin(x)(\cos(h)-1)+\cos(x)\sin(h)}{h}$$

$$f'(x)=\sin(x)\lim_{h\to0}\frac{\cos(h)-1}{h}+\cos(x)\lim_{h\to0}\frac{\sin(h)}{h}$$

$$f'(x)=\sin(x)\lim_{h\to0}\frac{\cos^2(h)-1}{h(\cos(h)+1)}+\cos(x)\lim_{h\to0}\frac{\sin(h)}{h}$$

Using a Pythagorean identity on the first limit on the RHS, we obtain:

$$f'(x)=-\sin(x)\lim_{h\to0}\frac{\sin^2(h)}{h(\cos(h)+1)}+\cos(x)\lim_{h\to0}\frac{\sin(h)}{h}$$

$$f'(x)=-\sin(x)\lim_{h\to0}\frac{\sin(h)}{h}\cdot\lim_{h\to0}\frac{\sin(h)}{(\cos(h)+1)}+\cos(x)\lim_{h\to0}\frac{\sin(h)}{h}$$

Using the fact that $$\lim_{u\to0}\frac{\sin(u)}{u}=1$$, we have:

$$f'(x)=-\sin(x)(1)(0)+\cos(x)(1)=\cos(x)$$

Can you now obtain a result for $f(x)=\cos(x)$?

How sin(h)/(cos(h)+1 =0 please descibe
 
rahulk said:
How sin(h)/(cos(h)+1 =0 please descibe

$$\lim_{h\to0}\frac{\sin(h)}{\cos(h)+1}=\frac{\sin(0)}{\cos(0)+1}=\frac{0}{1+1}=0$$ :D
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K