How to Fourier-transform e^(-2|t|)?

Click For Summary
SUMMARY

The discussion focuses on determining the Fourier transforms of two functions: a) \( f(t) = H(t+3) - H(t-3) \) and \( g(t) = \cos(5t) f(t) \), and b) \( f(t) = e^{-2|t|} \) and \( g(t) = \cos(3t) f(t) \). The Fourier transform is defined as \( \digamma\{ f(t) \}(\omega) = F(\omega) = \int_{-\infty}^{\infty} f(u)e^{-j\omega u}\,du \). The solution for part a) yields \( \digamma\{ f(t) \}(\omega) = 3 \text{sinc}(3\omega) \), while part b) leads to \( \digamma\{ f(t) \}(\omega) = \frac{4}{4 + \omega^2} \) and \( \digamma\{ f(t) \cos(3t) \}(\omega) = \frac{2}{4 + (\omega - 3)^2} + \frac{2}{4 + (\omega + 3)^2} \).

PREREQUISITES
  • Understanding of Fourier transforms and their properties
  • Familiarity with the Heaviside step function \( H(t) \)
  • Knowledge of complex exponentials and their relation to trigonometric functions
  • Ability to perform integration involving exponential functions
NEXT STEPS
  • Study the properties of the Heaviside step function and its applications in signal processing
  • Learn about the Fourier transform of common functions, including exponential decay functions
  • Explore the convolution theorem in the context of Fourier transforms
  • Investigate the use of Fourier transforms in solving differential equations
USEFUL FOR

Students and professionals in mathematics, engineering, and physics who are working with signal processing, particularly those interested in Fourier analysis and its applications.

TheSodesa
Messages
224
Reaction score
7

Homework Statement


Determine the Fourier-transfroms of the functions

\begin{equation*}
a) f : f(t) = H(t+3) - H(t-3) \text{ and } g : g(t) = \cos(5t) f(t)
\end{equation*}
and
\begin{equation*}
b) f : f(t) = e^{-2|t|} \text{ and } g : g(t) = \cos(3t) f(t)
\end{equation*}

Homework Equations


The Fourier transformation definition:
\begin{equation}
\digamma\{ f(t) \}(\omega) = F(\omega) = \int_{-\infty}^{\infty} f(u)e^{-j\omega u}\,du
\end{equation}
What to do with cosines:
\begin{equation}

\digamma\{f(t)\cos(\alpha t)\}(\omega) = \frac{1}{2} F(\omega - \alpha) + \frac{1}{2}F(\omega + \alpha)

\end{equation}

The Attempt at a Solution


I managed part a) somewhat:
\begin{align*}
\digamma\{ f(t) \}(\omega) &= \int_{-\infty}^{\infty} \left( H(t+3) - H(t-3) \right) e^{-j\omega u} \,du \\
%
&= \int_{-3}^{3} e^{-j\omega u} \,du = \left[ \frac{e^{-j\omega u}}{-j\omega}\right]_{-3}^{3}
= \left( \frac{e^{-j3\omega }}{-j\omega} - \frac{e^{j3\omega}}{-j\omega} \right)\\
%
&= \left( \frac{ e^{j3\omega}}{j\omega} - \frac{e^{-j3\omega }}{j\omega} \right) = \frac{1}{2j\omega}(e^{j3\omega } - e^{-j3\omega })\\
%
&= \frac{\sin(3\omega)}{\omega} = 3 sinc(3\omega)
\end{align*}
Sinc is continuous at ##\omega = 0##, so we don't need to handle that case separately.
Then, using equation (2) I wrote
\begin{align*}
\digamma\{ f(t) \cos(5t) \}(\omega) &= \frac{3}{2} sinc(3(\omega-5)) + \frac{3}{2} sinc(3(\omega+5))
\end{align*}

Part b) has me completely stumped. Since
\begin{equation}
|u|=
\begin{cases}
u &, u\geq 0\\
-u &, u < 0,
\end{cases}
\end{equation}
we write, according to equation (1):
\begin{align*}
\digamma\{ f(t) \}(\omega) &= \int_{-\infty}^{\infty} e^{-2|u|} e^{-j\omega u} \,du = \int_{-\infty}^{\infty} e^{-2|u|-j\omega u} e^{} \,du\\
%
&= \int_{-\infty}^{0} e^{2u-j\omega u} \,du + \int_{0}^{\infty} e^{-2u-j\omega u} \,du\\
%
&= \lim_{a \to \infty} \int_{-a}^{0} e^{(2-j\omega) u} \,du + \int_{0}^{a} e^{-(2+j\omega) u} \,du\\

%

&= \lim_{a \to \infty} \sij{-a}{0} \frac{e^{(2-j\omega) u}}{(2-j\omega)} + \sij{0}{a} \frac{e^{-(2+j\omega)u}}{-(2+j\omega)}\\

%

&= \lim_{a \to \infty} \left( \frac{e^0}{(2-j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)} \right)

+ \left( \frac{e^{-a(2-j\omega) }}{-(2+j\omega)} - \frac{e^0}{-(2+j\omega)} \right)\\

%

&= \lim_{a \to \infty} \left( \frac{1}{(2-j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)} \right)

+ \left( \frac{e^{-a(2-j\omega) }}{-(2+j\omega)} + \frac{1}{(2+j\omega)} \right) \\

%

&= \lim_{a \to \infty} \frac{1}{(2-j\omega)} + \frac{1}{(2+j\omega)} - \frac{e^{-a(2-j\omega) }}{(2+j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)}\\

%

&= \lim_{a \to \infty} \frac{(2+j\omega)}{(2+j\omega)(2-j\omega)} + \frac{(2-j\omega)}{(2+j\omega)(2-j\omega)}\\

&- \frac{(2-j\omega)e^{-a(2-j\omega) }}{(2+j\omega)(2-j\omega)} - \frac{(2+j\omega)e^{-a(2-j\omega)}}{(2+j\omega)(2-j\omega)}\\
\end{align*}

This isn't looking good. Is there a trick that I'm missing? Help would be appreciated.
 
Last edited:
Physics news on Phys.org
TheSodesa said:

Homework Statement


Determine the Fourier-transfroms of the functions

\begin{equation*}
a) f : f(t) = H(t+3) - H(t-3) \text{ and } g : g(t) = \cos(5t) f(t)
\end{equation*}
and
\begin{equation*}
b) f : f(t) = e^{-2|t|} \text{ and } g : g(t) = \cos(3t) f(t)
\end{equation*}

Homework Equations


The Fourier transformation definition:
\begin{equation}
\digamma\{ f(t) \}(\omega) = F(\omega) = \int_{-\infty}^{\infty} f(u)e^{-j\omega u}\,du
\end{equation}

The Attempt at a Solution



Part b) has me completely stumped.

If you write ##\cos(3t)## in terms of ##e^{\pm 3 j t}## you have
$$\int_{-\infty}^0 e^{-j w t} e^{\pm 3 j t} e^{2t} \, dt = \frac{1}{2 - j w \pm 3 j} \left. e^{-j w t} e^{\pm 3 j t} e^{2t}\right|_{-\infty}^0,$$
which is convergent because of the exponential damping factor ##e^{2t}## when ##t \to -\infty##. Similarly for the other part.
 
In the ##\left[\frac{etc.}{etc.}\right]_0^a## term you omitted the u from the exponent, but that's just a typo. What I do not get is what happened to that term in the next line. How did (2+jω) turn into (2-jω)? Maybe just another typo, rectified later, but this is making it hard to follow.
 
  • Like
Likes TheSodesa
haruspex said:
In the ##\left[\frac{etc.}{etc.}\right]_0^a## term you omitted the unfrom the exponent, but that's just a typo. What I do not get is what happened to that term in the next line. How did (2+jω) turn into (2-jω)? Maybe just another typo, rectified later, but this is making it hard to follow.
Yhea, I just noticed. Fixing.
 
haruspex said:
In the ##\left[\frac{etc.}{etc.}\right]_0^a## term you omitted the u from the exponent, but that's just a typo. What I do not get is what happened to that term in the next line. How did (2+jω) turn into (2-jω)? Maybe just another typo, rectified later, but this is making it hard to follow.
Ok, so right now I have
\begin{align*}
\digamma\{f(t)\}(\omega) = \lim_{a \to \infty} \frac{(2+j\omega)e^{a(2-j\omega) }}{(2+j\omega)(2-j\omega)}
+ \frac{(2-j\omega)e^{-a(2-j\omega)}}{(2+j\omega)(2-j\omega)}
\end{align*}
Not compeltely sure what to do here. I'm trying to edit my offline LaTeX document at the same time, so mistakes are bound to be made.
 
TheSodesa said:
Ok, so right now I have
\begin{align*}
\digamma\{f(t)\}(\omega) = \lim_{a \to \infty} \frac{(2+j\omega)e^{a(2-j\omega) }}{(2+j\omega)(2-j\omega)}
+ \frac{(2-j\omega)e^{-a(2-j\omega)}}{(2+j\omega)(2-j\omega)}
\end{align*}
Not compeltely sure what to do here. I'm trying to edit my offline LaTeX document at the same time, so mistakes are bound to be made.
You still have 2-jω in both exponents.
 
  • Like
Likes TheSodesa
haruspex said:
You still have 2-jω in both exponents.
\begin{align*}
\digamma\{f(t)\}(\omega) &= \lim_{a \to \infty} \frac{(2+j\omega)e^{a(2-j\omega) }}{(2+j\omega)(2-j\omega)}
+ \frac{(2-j\omega)e^{-a(2+j\omega)}}{(2+j\omega)(2-j\omega)}\\
&= \lim_{a \to \infty} \frac{(2+j\omega)e^{a(2-j\omega) } + (2-j\omega)e^{-a(2+j\omega)}}{(2+j\omega)(2-j\omega)}
\end{align*}
There. I think it might have been a bad idea to try and learn LaTeX proper by doing all of my coursework with it. Copy-paste can be treacherous.
 
haruspex said:
You still have 2-jω in both exponents.
It looks like I have a sum of complex conjugates in the numerator.
 
Ray Vickson said:
If you write ##\cos(3t)## in terms of ##e^{\pm 3 j t}## you have
$$\int_{-\infty}^0 e^{-j w t} e^{\pm 3 j t} e^{2t} \, dt = \frac{1}{2 - j w \pm 3 j} \left. e^{-j w t} e^{\pm 3 j t} e^{2t}\right|_{-\infty}^0,$$
which is convergent because of the exponential damping factor ##e^{2t}## when ##t \to -\infty##. Similarly for the other part.
It's not the cosine, that scares me. What I'm ahving trouble with is ##f(t)##. I also made a few mistakes in the opening post because I'm copyin stuff from my offline LaTeX-document. They should be fixed now.
 
  • #10
TheSodesa said:
It looks like I have a sum of complex conjugates in the numerator.
No, there's still a problem.
Look at the last two lines of your original post. In the left hand integral, you had -a in the exponent, but it becomes +a.
As Ray says, it should converge.
I would not have introduced the lim operators, though I know that is technically correct. I would have just integrated still with infinities in the bounds, and used the fact that ex+iy tends to zero as x tends to minus infinity regardless of what y does.
 
  • #11
haruspex said:
No, there's still a problem.
Look at the last two lines of your original post. In the left hand integral, you had -a in the exponent, but it becomes +a.
As Ray says, it should converge.
I would not have introduced the lim operators, though I know that is technically correct. I would have just integrated still with infinities in the bounds, and used the fact that ex+iy tends to zero as x tends to minus infinity regardless of what y does.

Alright, let me go over it once more. This might take a moment.
 
  • #12
haruspex said:
No, there's still a problem.
Look at the last two lines of your original post. In the left hand integral, you had -a in the exponent, but it becomes +a.
As Ray says, it should converge.
I would not have introduced the lim operators, though I know that is technically correct. I would have just integrated still with infinities in the bounds, and used the fact that ex+iy tends to zero as x tends to minus infinity regardless of what y does.

I got it. Just a sec, and I'll clean up my derivation.
 
  • #13
TheSodesa said:
It's not the cosine, that scares me. What I'm ahving trouble with is ##f(t)##. I also made a few mistakes in the opening post because I'm copyin stuff from my offline LaTeX-document. They should be fixed now.

Your ##f(t) = e^{-2|t|}## is no problem; that is why you used ##e^{2t}## for ##t < 0## and ##e^{-2t}## for ##t >0##. You get two convergent integrals. It is even faster and easier to use standard expressions for ##\int e^{at} \cos(bt) \, dt##, then use ##b = 3## and
$$ a = \begin{cases} -j\omega + 2, & t < 0\\
-j \omega - 2,& t > 0
\end{cases}
$$
 
Last edited:
  • Like
Likes TheSodesa
  • #14
Alright, here's the complete derivation this time (hopefully) without errors:

\begin{align*}
\digamma\{ f(t) \}(\omega) &= \int_{-\infty}^{\infty} e^{-2|u|} e^{-j\omega u} \,du = \int_{-\infty}^{\infty} e^{-2|u|-j\omega u} \,du\\
&= \int_{-\infty}^{0} e^{2u-j\omega u} \,du + \int_{0}^{\infty} e^{-2u-j\omega u} \,du\\
&= \lim_{a \to \infty} \int_{-a}^{0} e^{(2-j\omega) u} \,du + \int_{0}^{a} e^{-(2+j\omega) u} \,du\\
&= \lim_{a \to \infty} \left[ \frac{e^{(2-j\omega) u}}{(2-j\omega)}\right]_{-a}^{0} + \left[ \frac{e^{-(2+j\omega)u}}{-(2+j\omega)}\right]_{0}^{a}\\
&= \lim_{a \to \infty} \left( \frac{e^0}{(2-j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)} \right)
+ \left( \frac{e^{-a(2-j\omega) }}{-(2+j\omega)} - \frac{e^0}{-(2+j\omega)} \right)\\
&= \lim_{a \to \infty} \left( \frac{1}{(2-j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)} \right)
+ \left( \frac{e^{-a(2-j\omega) }}{-(2+j\omega)} + \frac{1}{(2+j\omega)} \right)\\
&= \lim_{a \to \infty} \frac{1}{(2-j\omega)} + \frac{1}{(2+j\omega)} - \frac{e^{-a(2-j\omega) }}{(2+j\omega)} - \frac{e^{-a(2-j\omega)}{(2-j\omega)}\\
&= \lim_{a \to \infty} \frac{(2+j\omega)}{(2+j\omega)(2-j\omega)} + \frac{(2-j\omega)}{(2+j\omega)(2-j\omega)}\\
&- \frac{(2-j\omega) \overbrace{e^{-a(2-j\omega) }}^{\text{Real coefficient goes to zero...}}}{(2+j\omega)(2-j\omega)}
- \frac{(2+j\omega)\overbrace{e^{-a(2-j\omega) }^{\text{... specifically exp(-2a)}}}{(2+j\omega)(2-j\omega)}\\
&= \frac{(2-j\omega) + (2+j\omega)}{(2+j\omega)(2-j\omega)} = \frac{4}{4 + \omega^2}
\end{align*}

Then, if we apply equation ##(2)## to the case where we multiply ##f(t)## by ##\cos(3t)##:
\begin{align*}
\digamma\{f(t)\cos(3t)\}(\omega) &= \frac{1}{2} \frac{4}{4 + \left( \omega -3 \right)^2} + \frac{1}{2} \frac{4}{4 + \left( \omega + 3 \right)^2}\\
&= \frac{2}{4 + \left( \omega -3 \right)^2} + \frac{2}{4 + \left( \omega + 3 \right)^2}\\
\end{align*}
 
Last edited:
  • #15
TheSodesa said:
Alright, here's the complete derivation this time (hopefully) without errors:

\begin{align*}
\digamma\{ f(t) \}(\omega) &= \int_{-\infty}^{\infty} e^{-2|u|} e^{-j\omega u} \,du = \int_{-\infty}^{\infty} e^{-2|u|-j\omega u} \,du\\

&= \int_{-\infty}^{0} e^{2u-j\omega u} \,du + \int_{0}^{\infty} e^{-2u-j\omega u} \,du\\
&= \lim_{a \to \infty} \int_{-a}^{0} e^{(2-j\omega) u} \,du + \int_{0}^{a} e^{-(2+j\omega) u} \,du\\
&= \lim_{a \to \infty} \left[ \frac{e^{(2-j\omega) u}}{(2-j\omega)}\right]_{-a}^{0} + \left[ \frac{e^{-(2+j\omega)u}}{-(2+j\omega)}\right]_{0}^{a}\\
&= \lim_{a \to \infty} \left( \frac{e^0}{(2-j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)} \right)
+ \left( \frac{e^{-a(2-j\omega) }}{-(2+j\omega)} - \frac{e^0}{-(2+j\omega)} \right)\\
&= \lim_{a \to \infty} \left( \frac{1}{(2-j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)} \right)
+ \left( \frac{e^{-a(2-j\omega) }}{-(2+j\omega)} + \frac{1}{(2+j\omega)} \right)\\
&= \lim_{a \to \infty} \frac{1}{(2-j\omega)} + \frac{1}{(2+j\omega)} - \frac{e^{-a(2-j\omega) }}{(2+j\omega)} - \frac{e^{-a(2-j\omega)}{(2-j\omega)}\\
&= \lim_{a \to \infty} \frac{(2+j\omega)}{(2+j\omega)(2-j\omega)} + \frac{(2-j\omega)}{(2+j\omega)(2-j\omega)}\\
&- \frac{(2-j\omega)\overbrace{e^{-a(2-j\omega) }}^{\text{Real coefficient goes to zero...}}}{(2+j\omega)(2-j\omega)}
- \frac{(2+j\omega)\overbrace{e^{-a(2-j\omega) }}^{\text{...specifically exp(-2a)}}}{(2+j\omega)(2-j\omega)}\\
&= \frac{(2-j\omega) + (2+j\omega)}{(2+j\omega)(2-j\omega)} = \frac{4}{4 + \omega^2}
\end{align*}

Then, if we apply equation ##(2)## to the case where we multiply ##f(t)## by ##\cos(3t)##:
\begin{align*}
\digamma\{f(t)\cos(3t)\}(\omega) &= \frac{1}{2} \frac{4}{4 + \left( \omega -3 \right)^2} + \frac{1}{2} \frac{4}{4 + \left( \omega + 3 \right)^2}\\
&= \frac{2}{4 + \left( \omega -3 \right)^2} + \frac{2}{4 + \left( \omega + 3 \right)^2}\\
\end{align*}

Answer is correct; derivation did not render properly.
 
  • #16
There seems to be a math processing error preventing the rendering of the biggest part of this exercise. Looking at the source code, I can't spot the error on my part.

Regradless, if it doesn't decide to resolve itself, the correct answer was
\begin{equation}
\digamma\{ f(t) \} = \frac{4}{4 + \omega^2}
\end{equation}

Thanks for the help, everyone.
 
Last edited:
  • #17
Ray Vickson said:
Answer is correct; derivation did not render properly.
Yeah, I'm wondering why that is. I tried to switch any dollar signs to double pound signs and such, but its still not rendering.
 
  • #18
Doesn't seem to like the text imbeds
TheSodesa said:
Alright, here's the complete derivation this time (hopefully) without errors:
##
\digamma\{ f(t) \}(\omega) = ## ##\int_{-\infty}^{\infty} e^{-2|u|} e^{-j\omega u} \,du = ## ##\int_{-\infty}^{\infty} e^{-2|u|-j\omega u} \,du## ##
= \int_{-\infty}^{0} e^{2u-j\omega u} \,du + \int_{0}^{\infty} e^{-2u-j\omega u} \,du\\## ##
= \lim_{a \to \infty} \int_{-a}^{0} e^{(2-j\omega) u} \,du + \int_{0}^{a} e^{-(2+j\omega) u} \,du\\## ##
= \lim_{a \to \infty} \left[ \frac{e^{(2-j\omega) u}}{(2-j\omega)}\right]_{-a}^{0} + \left[ \frac{e^{-(2+j\omega)u}}{-(2+j\omega)}\right]_{0}^{a}\\## ##
= \lim_{a \to \infty} \left( \frac{e^0}{(2-j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)} \right)+ \left( \frac{e^{-a(2-j\omega) }}{-(2+j\omega)} - \frac{e^0}{-(2+j\omega)} \right)\\## ##
= \lim_{a \to \infty} \left( \frac{1}{(2-j\omega)} - \frac{e^{-a(2-j\omega)}}{(2-j\omega)} \right)
+ \left( \frac{e^{-a(2-j\omega) }}{-(2+j\omega)} + \frac{1}{(2+j\omega)} \right)\\## ##
= \lim_{a \to \infty} \frac{1}{(2-j\omega)} + \frac{1}{(2+j\omega)} - \frac{e^{-a(2-j\omega) }}{(2+j\omega)} - \frac{e^{-a(2-j\omega)}{(2-j\omega)}\\## ##
= \lim_{a \to \infty} \frac{(2+j\omega)}{(2+j\omega)(2-j\omega)} + \frac{(2-j\omega)}{(2+j\omega)(2-j\omega)}
- \frac{(2-j\omega) \overbrace{e^{-a(2-j\omega) }}^{\text{Real coefficient goes to zero...}}}{(2+j\omega)(2-j\omega)}
- \frac{(2+j\omega)\overbrace{e^{-a(2-j\omega) }^{\text{... specifically exp(-2a)}}}{(2+j\omega)(2-j\omega)}\\## ##
= \frac{(2-j\omega) + (2+j\omega)}{(2+j\omega)(2-j\omega)} = \frac{4}{4 + \omega^2}
##

Then, if we apply equation ##(2)## to the case where we multiply ##f(t)## by ##\cos(3t)##:
\begin{align*}
\digamma\{f(t)\cos(3t)\}(\omega) &= \frac{1}{2} \frac{4}{4 + \left( \omega -3 \right)^2} + \frac{1}{2} \frac{4}{4 + \left( \omega + 3 \right)^2}\\
&= \frac{2}{4 + \left( \omega -3 \right)^2} + \frac{2}{4 + \left( \omega + 3 \right)^2}\\
\end{align*}
 

Similar threads

Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
7K
  • · Replies 3 ·
Replies
3
Views
3K