How to Implement Current Conservation for SU(N) in the Adjoint Representation?

Tian
Messages
5
Reaction score
0
Homework Statement
In the "An introduction to Quantum Field Thoery" of Peskin and Schroeder, the equation(15.51) of the chapter 15.3 gives the classical equation of motion, so from this equation to derive the current conservation.
Relevant Equations
the classical equation of motion for SU(N), please see my picture
Here is my solution
2C869620FEBDBAA1F955AC83ADAF6638.png
 
Physics news on Phys.org
D^{\mu}F_{\mu\nu} = - j_{\nu}, Differentiate this covariantly and anti-symmetrized to obtain \frac{1}{2}[D^{\mu}, D^{\nu}]F_{\mu\nu} = D^{\nu}j_{\nu}. \ \ \ \ (1) Now, from the definition of the covariant derivative in the adjoint representation (acting on any matrix-valued field) D^{\mu}M \equiv \partial^{\mu}M + [A^{\mu} , M], you can show that [D^{\mu} , D^{\nu}]M = [F^{\mu\nu} ,M] Thus, for M = F_{\mu\nu}, eq(1) becomes D^{\nu}j_{\nu} = \frac{1}{2}[F^{\mu\nu} , F_{\mu\nu}] = 0.
 
Thank you veery much . It should be done in the adjoint repesentation.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top