The following problem is from the textbook "Real Mathematical Analysis" by Charles Chapman Pugh.(adsbygoogle = window.adsbygoogle || []).push({});

Given ##\epsilon > 0##, show that the unit disc contains finitely many dyadic squares whose total area exceeds ##\pi - \epsilon##, and which intersect each other only along their boundaries.

I find myself unable to understand what the problem is asking to show. At first glace, I thought it was asking to show that given any ##\epsilon##, any collection of dyadic squares that 1) had a total area of greater than ##\pi - \epsilon## and 2) intersected along their boundaries would necessarily be finite. However, this assertion is obviously not true. [Let ##\epsilon > \pi## and consider the infinite collection of dyadic squares ##\{[0,\frac{1}{2}]\times[0,\frac{1}{2}],[\frac{1}{2},\frac{3}{4}]\times[0,\frac{1}{4}],[\frac{3}{4},\frac{7}{8}]\times[0,\frac{1}{8}],...\}##]

What am I missing?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# How to interpret this problem involving dyadic squares and unit disc?

**Physics Forums | Science Articles, Homework Help, Discussion**