How to move from the space of moments to the space of energies?

Click For Summary

Homework Help Overview

The discussion revolves around the transition from momentum space to energy space in the context of a gas of bosons with spin 0, focusing on the grand potential and its implications for calculating the average number of bosons in the system.

Discussion Character

  • Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants explore the integration of the grand potential in energy states, questioning the factors that arise in the expressions for the average number of bosons. There is a focus on the derivation process and the implications of variable substitutions.

Discussion Status

Some participants have identified potential errors in their calculations and substitutions, leading to discrepancies in results. There is an ongoing examination of the correct approach to variable changes and derivatives, with some guidance provided on careful handling of these mathematical steps.

Contextual Notes

Participants express uncertainty regarding the integration process and the factors involved, noting that their results differ from established references. There is acknowledgment of the complexity of the derivations and the need for clarity in the substitution of variables.

damarkk
Messages
12
Reaction score
2
Homework Statement
Grand Canonical Ensemble of bosons: how to move from the space of moments to the space of energies?
Relevant Equations
I denote with #\epsilon# the energy of the state particle, and we have ##2m\epsilon = p^2## where
##p^2 = p_{x}^2+p_{y}^2+p_{z}^2##
Suppose we have a gas of bosons with spin 0 and the grand potential is

##\Phi =\frac{kTV}{h^3} \int ln(1-e^{-\beta(p^2/2m -\mu})d^3p##

we already integrated the function in the coordinate space and the result is the factor V (volume). Now, we know that ##\epsilon = p^2/2m## and ##d^3p = 4\pi p^2dp##, and if we change variable because we want to integrate in energies states we have of course ##p^2 = 2m\epsilon## and we obtain ##dp = (2m)^{1/2} \epsilon^{-1/2}d\epsilon##. The expression of ##\Phi## changes and become

##\Phi =\frac{kTV}{h^3} \int ln(1-e^{-\beta(p^2/2m -\mu})4\pi (2m)^{3/2}\epsilon^{1/2}d\epsilon##

or in a better manner

##\Phi =\frac{4\pi kTV(2m)^{3/2}}{h^3} \int ln(1-e^{-\beta(p^2/2m -\mu})\epsilon^{1/2}d\epsilon## (1)


Starting from this expression of the grand potential we can obtain the average number of bosons of the gas system

##N = -\frac{\partial{\Phi}}{\partial{\mu}} = \frac{4\pi V (2m)^{3/2}}{h^3} \int \frac{\epsilon^{1/2}}{e^{\beta(\epsilon-\mu)}-1} d\epsilon## (2)

the expressions (1) and (2) are different from the same that we can read on books like Greiner (Thermodynamics Statistical Mechanics) or Amit (Statistical Physics: and introductory course):

##N = -\frac{\partial{\Phi}}{\partial{\mu}} = \frac{2\pi V (2m)^{3/2}}{h^3} \int \frac{\epsilon^{1/2}}{e^{\beta(\epsilon-\mu)}-1} d\epsilon## (3)

for a factor 2.

And I know this is ridicolous and of course there are some misunderstanding very basic, but I don't understand why my result is double compared with the (3).
 
Physics news on Phys.org
damarkk said:
we already integrated the function in the coordinate space and the result is the factor V (volume). Now, we know that ϵ=p2/2m and d3p=4πp2dp, and if we change variable because we want to integrate in energies states we have of course p2=2mϵ and we obtain dp=(2m)1/2ϵ−1/2dϵ. T
##p^2=2m\epsilon##
##2pdp=2md\epsilon##
##dp=\frac{m}{p} d\epsilon=\frac{\sqrt{m} }{\sqrt{2}\sqrt{\epsilon}} d\epsilon##
it differs factor 1/2 from your result.
 
  • Like
Likes   Reactions: damarkk
I'm sorry because this is very a stupid question :D (if you want delete it). Of course the mistake occurs because

##N(k)= \frac{V}{(2\pi)^3}\frac{4}{3}\pi k^3## and ##\frac{d N}{d k} = \frac{V}{(2\pi)^3}=4\pi k^2##

I substitute ##k^2## with ##2m\epsilon/\hbar^2## and this is the error.

The substitution must be done before the derivation ##N(\epsilon)=\frac{V}{(2\pi)^3}\frac{4}{3}\pi (\frac{2m\epsilon}{\hbar^2})^{3/2} ## and therefore we have

##\frac{d N}{d \epsilon}= \frac{2\pi (2m)^{3/2} \epsilon^{1/2}}{h^3}##

and this is correct.

Alternatively we can compute in this manner:


##\frac{d N}{d \epsilon}=\frac{d N}{d k}\frac{d k}{d \epsilon} =\frac{V}{(2\pi)^{3}} 4\pi (\frac{2m\epsilon}{\hbar^2}) \frac{m}{\hbar\sqrt{2m\epsilon}}##

that is equal to

## \frac{2\pi (2m)^{3/2} \epsilon^{1/2}}{h^3}##
 
damarkk said:
I substitute k2 with 2mϵ/ℏ2 and this is the error.
You may do this substitution anywhere. Just please be careful for taking derivatives as I posted #2.
 
Last edited:
You're right.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K