How to obtain amplitude of current in parallel RLC circuit?

  • Thread starter Thread starter zenterix
  • Start date Start date
  • Tags Tags
    Rlc circuit
Click For Summary
SUMMARY

This discussion focuses on calculating the amplitude of current in a parallel RLC circuit using analytical methods rather than phasor diagrams. The current expressions for resistive, inductive, and capacitive components are derived using Kirchhoff's Voltage Law (KVL) and Kirchhoff's Current Law (KCL). The amplitude of the total current, denoted as A, is calculated using the formula A = √(1/R² + (ωC - 1/ωL)²), where R is resistance, L is inductance, and C is capacitance. This analytical approach provides a clear alternative to phasor diagrams for those less familiar with complex impedance.

PREREQUISITES
  • Understanding of Kirchhoff's Voltage Law (KVL)
  • Familiarity with Kirchhoff's Current Law (KCL)
  • Basic knowledge of AC circuit analysis
  • Concept of impedance in electrical circuits
NEXT STEPS
  • Study the derivation of current expressions in RLC circuits using KVL and KCL
  • Learn about phasor diagrams and their application in AC circuit analysis
  • Explore the concept of complex impedance in detail
  • Investigate the effects of varying R, L, and C on the amplitude and phase of current
USEFUL FOR

Electrical engineering students, circuit designers, and anyone involved in AC circuit analysis who seeks to deepen their understanding of current behavior in parallel RLC circuits.

zenterix
Messages
774
Reaction score
84
Homework Statement
Consider the circuit below which is an RLC circuit with the circuit elements in parallel.
Relevant Equations
I would like to find the amplitude of the current ##I##.
1715547774429.png


If we apply KVL to the three separate loops involving the AC voltage we obtain expressions for ##I_R, I_L##, and ##I_C##.

$$-V(t)+I_R(t)R=0$$

$$\implies I_R(t)=\frac{V_0}{R}\sin{(\omega t)}$$

$$-V(t)=-L\dot{I}_L(t)$$

$$\implies I_L(t)=\frac{V_0}{\omega L}\sin{(\omega t-\pi/2)}$$

$$-V(t)+\frac{q(t)}{C}=0$$

$$\implies I_C(t)=V_0C\omega\sin{(\omega t+\pi/2)}$$

By KCL we have

$$I=I_R+I_L+I_C=\frac{V_0}{R}\sin{(\omega t)}+\frac{V_0}{\omega L}\sin{(\omega t-\pi/2)}+V_0\omega C\sin{(\omega t+\pi/2)}$$

How do we find the amplitude of ##I##?

In the notes I am following, they use phasor diagrams. I would like to know how to obtain the amplitude using analytical methods.
 
Physics news on Phys.org
Finding the amplitude of ##I## is actually simple.

$$I(t)=V_0\left ( \frac{1}{R}\sin{(\omega t)}+\cos{(\omega t)}\left (\omega C-\frac{1}{\omega L}\right )\right )$$

where I have used the fact that

$$\sin{(\omega t-\pi/2)}=-\cos{(\omega t)}$$

$$\sin{(\omega t+\pi/2)}=\cos{(\omega t)}$$

Thus, we have an expression of the form ##a\sin{\omega t}+b\cos{\omega t}##.

If we set

$$a=A\sin{\phi}$$

$$b=A\cos{\phi}$$

then

$$A=\sqrt{a^2+b^2}$$

Thus, we can write

$$I(t)=a\sin{\omega t}+b\cos{\omega t}=A\sin{\phi}\sin{\omega t}+A\cos{\phi}\cos{\omega t}$$

$$=A\cos{(\omega t+\phi)}$$

where

$$A=\sqrt{\frac{1}{R^2}+\left (\omega C-\frac{1}{\omega L}\right )^2}$$

which is the amplitude of the current.

1715551971882.png
 
Last edited:
For the record, perhaps one might ask why I am not embracing phasor diagrams currently.

I guess it is because I don't have a solid grounding in using them.

For the example in the OP we have

1715551891910.png


It seems that the vectors are

$$\vec{I}_R=\frac{V_0}{R}\langle \cos{\omega t},\sin{\omega t}\rangle$$

$$\vec{I}_L=\frac{V_0}{\omega L}\langle \cos{(\omega t-\pi/2)},\sin{(\omega t-\pi/2)}\rangle$$

$$\vec{I}_C=V_0\omega C\langle \cos{(\omega t+\pi/2)},\sin{(\omega t+\pi/2)}\rangle$$

Apparently, we can add these vectors to get the vector for the current ##I##.

The diagram above seems to be the situation at times ##t=2\pi k## for integer ##k##.

The vectors are thus

$$\vec{I}_R=\langle V_0/R,0\rangle$$

$$\vec{I}_L=\langle 0,-V_0/\omega L\rangle$$

$$\vec{I}_C=\langle 0,V_0\omega C\rangle$$

and thus

$$\vec{I}_C+\vec{I}_L=\langle 0,V_0(C\omega+1/\omega L\rangle$$

which is the little pink vector in the picture above.

The black vector is the sum of all three phasors and is

$$\vec{I}=\langle V_0/R, V_0(C\omega+1/\omega L$$

The angle ##\phi## is the phase of the current and

$$\tan{\phi}=\frac{c\omega-1/\omega L}{1/R}$$

These are the same results we found algebraically.
 
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
Replies
4
Views
1K
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K