MHB How to Prove a Limit in Two Variables?

  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Limit Variables
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Hey MHB !

I've got a question that I am clueless how to proceed

Prove that

$$\Large \lim_{(x,y)\to (0,0)}(1+x^2y^2) ^{\frac{-1}{x^2+y^2}} = 1$$

Any hint would be appreciated.
 
Physics news on Phys.org
ZaidAlyafey said:
Hey MHB !

I've got a question that I am clueless how to proceed

Prove that

$$\Large \lim_{(x,y)\to (0,0)}(1+x^2y^2) ^{\frac{-1}{x^2+y^2}} = 1$$

Any hint would be appreciated.

Using polar coordinaters is...

$\displaystyle |\ln \{(1 + x^{2}\ y^{2})^{- \frac{1}{x^{2} + y^{2}}}\}| = \frac{\ln (1 + \rho^{4}\ \cos^{2} \theta\ \sin^{2} \theta)}{\rho^{2}} < \frac{\ln (1 + \rho^{4})}{\rho^{2}} = \frac{\rho^{4} - \frac{\rho^{8}}{2} + ...}{\rho^{2}}\ (1)$

... so that...

$\displaystyle \lim_{\rho \rightarrow 0} \ln \{(1 + x^{2}\ y^{2})^{- \frac{1}{x^{2} + y^{2}}}\} = 0\ (2)$

Kind regards

$\chi$ $\sigma$
 
Have you considered converting to polar coordinates?
 
chisigma said:
Using polar coordinaters is...

$\displaystyle |\ln \{(1 + x^{2}\ y^{2})^{- \frac{1}{x^{2} + y^{2}}}\}| = \frac{\ln (1 + \rho^{4}\ \cos^{2} \theta\ \sin^{2} \theta)}{\rho^{2}} < \frac{\ln (1 + \rho^{4})}{\rho^{2}} = \frac{\rho^{4} - \frac{\rho^{8}}{2} + ...}{\rho^{2}}\ (1)$

... so that...

$\displaystyle \lim_{\rho \rightarrow 0} \ln \{(1 + x^{2}\ y^{2})^{- \frac{1}{x^{2} + y^{2}}}\} = 0\ (2)$

Kind regards

$\chi$ $\sigma$

Nice trick of using logarithm !

- - - Updated - - -

MarkFL said:
Have you considered converting to polar coordinates?

I did but with no success.
 
ZaidAlyafey said:
I did but with no success.

What I did was let:

$$k=\sin^2(\theta)\cos^2(\theta)$$

And then we have:

$$\lim_{r\to0}\left[\left(1+kr^4\right)^{-\frac{1}{r^2}}\right]=L$$

Taking natural logs:

$$-\lim_{r\to0}\left[\frac{\ln\left(1+kr^4\right)}{r^2}\right]=\ln(L)$$

Apply L'Hôpital:

$$-2k\lim_{r\to0}\left[\frac{r^2}{kr^4+1}\right]=\ln(L)$$

$$0=\ln(L)$$

$$L=1$$
 

Similar threads

Replies
1
Views
2K
Replies
2
Views
2K
Replies
4
Views
2K
Replies
9
Views
2K
Replies
2
Views
1K
Replies
1
Views
1K
Back
Top