I How to prove that a scalar potential exists if the curl of the vector point function is zero?

  • Thread starter Thread starter immortalsameer13
  • Start date Start date
  • Tags Tags
    Vector calculus
Click For Summary
A scalar potential exists if the curl of a vector point function is zero, as demonstrated by the closed curve integral being zero for any closed curve. This implies that the one-way integral between two points is path-independent, leading to a well-defined potential. By establishing a starting point, p_0, the integral values from this point to any other points can be calculated, confirming the existence of a scalar potential. The process relies on the properties of vector fields and their integrals over surfaces. Thus, the conditions for a scalar potential are satisfied when the curl of the vector field is zero.
immortalsameer13
Messages
2
Reaction score
1
scalar potential can be obtained by integrating the vector point function whose curl is zero but how to arrive at this result that a potential exist
 
Mathematics news on Phys.org
First show that if ##\mathrm{rot}\, v=0## then ##\int_Cv_xdx+v_ydy+v_zdz=0## for any closed curve ##C##. To do that
consider a 2-dimensional surface ##S## such that ##\partial S=C##
 
Last edited:
  • Like
Likes FactChecker and topsquark
immortalsameer13 said:
scalar potential can be obtained by integrating the vector point function whose curl is zero but how to arrive at this result that a potential exist
Because the closed curve integral is zero, the one-way integral from one point to another has only one answer no matter which path is taken. So the one-way integral gives you a well-defined definition of the potential.

ADDED: Establish a starting point, ##p_0##, for the beginning of a path to any and all other points. The integral values from ##p_0## to the other points gives a well-defined potential at those points.
 
Last edited:
  • Like
Likes immortalsameer13

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 2 ·
Replies
2
Views
4K