How to prove the binomial coefficient?

Click For Summary
The discussion revolves around proving the binomial coefficient using a counting argument and a matrix method to visualize combinations of terms. The user fixed values for n and k, creating a table to count the arrangements of three x's and two y's. They expressed uncertainty about the correctness of their approach and sought confirmation on equating their findings to the binomial coefficient formula. Another participant pointed out that the proposed summation does not hold in general and suggested checking with different values of n and k to validate the results. The conversation highlights the complexity of counting arguments and the importance of rigorous proof in combinatorial mathematics.
Eclair_de_XII
Messages
1,082
Reaction score
91
Homework Statement
"Prove that the coefficient for ##x^ky^{n-k}## is ##\binom n k##."
Relevant Equations
Derived expression for binomial coefficient: ##\sum_{m=1}^{n-k+1} \sum_{i=1}^m i##
Basically, the way I did this problem was to use a table with a known ##n## and ##k##. In this case, I fixed ##n=5##, and ##k=3##. I wanted to find the number of terms with three ##x##'s and two ##y##'s. I labeled each ##x_i##, ##1\leq i \leq 5##; the ##y_i## are labeled the same way. Anyway, what I did was create a table that helped me keep count of how many possible terms I can have with exactly three ##x##'s. It looks something like this: I made a matrix (table) with the indices at the top, the ##k-1## variables I fix as ##X##, the possible choices for the last ##x_i## as ##O##, and the variable(s) I exclude as ##+##.

##\begin{pmatrix}
1 & 2 & 3 & 4 & 5\\
X & X & O & O & O \\
X & + & X & O & O \\
X & + & + & X & O\\
+ & X & X & O & O \\
+ & X & + & X & O \\
+ & + & X & X & O \\
\end{pmatrix}##

What I do is count the number of ##O##'s there are to get the number of terms with exactly ##k## ##x_i## in them. I get that this is not exactly orthodox, but that is how I got the expression in the relevant equations section. The trouble I have is, that I am not sure that it is completely correct, and that I am having trouble equating it to ##\binom n k##. I imagine it will take a lot of strenuous algebra, which is why I want to hold off on it until someone can confirm my suspicions that:

##\binom n k = \sum_{m=1}^{n-k+1} \sum_{i=1}^m i##
 
Physics news on Phys.org
one other way i would recommend is induction did you consider that?

edit:(i just realized this)
or alternatively you could get a much faster solution if you consider what it means to get a term of
##
x^k y^{n-k}
##
and it relation to choosing
trying writing
##
(x+y)^n
##
as
##
(x+y)(x+y)...(x+y)
##
 
Last edited:
Use induction or use a counting argument:

In the expansion of ##(x+y)^n= (x+y)\dots (x+y)##, in how many ways can we get the term ##x^ky^{n-k}##?
 
Eclair_de_XII said:
##\binom n k = \sum_{m=1}^{n-k+1} \sum_{i=1}^m i##

That is certainly untrue just by inspection. It's saying that ##\binom n k## only depends on ##n-k##.
 
Eclair_de_XII said:
##\binom n k = \sum_{m=1}^{n-k+1} \sum_{i=1}^m i##
You could check your attempt with other values of ##n## and ##k##, and you'll see it doesn't work in general. Plus you'll probably recognize @Dick's observation about your result depending only on ##n-k##.

I think your analysis just happened to work for that specific case because ##k=3##, but if you consider a case where ##k=4## for example, the counting gets a bit more complicated.
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
868
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K