MHB How to Prove the Sum of the Power Series Using the Series for Cotangent?

Click For Summary
The discussion focuses on proving that the sum of the series $\sum_{n=1}^{\infty}\frac{1}{n^2} = \frac{\pi^2}{6}$ using the derivative of the cotangent series. Participants reference the infinite product representation of sine and derive the series expansion for $\pi \cot(\pi z)$. They explore the limit as \( z \) approaches 0 to connect the series to the desired sum. The conversation highlights the challenge of calculating this limit without computational tools. Ultimately, the goal is to establish the relationship between the cotangent series and the sum of the reciprocals of squares.
Dustinsfl
Messages
2,217
Reaction score
5
Show $\sum\limits_{n=1}^{\infty}\frac{1}{n^2} = \frac{\pi^2}{6}$ using the series for $(\pi\cot\pi z)'$ at $z = 0$

I know from class that $\sin\pi z = \pi z\prod\limits_{n\in\mathbb{Z} -\{0\}}\left[\left(1-\frac{z}{n}\right)e^{z/n}\right]$

So do I need to use that to rewrite cot as cosine over that product?
 
Physics news on Phys.org
A 'very nice' series expansion is...

$\displaystyle \pi \cot (\pi\ z)= \frac{1}{z}+2\ z\ \sum_{n=1}^{\infty} \frac{1}{z^{2}-n^{2}}$ (1)

From (1) You derive...

$\displaystyle \frac{{\pi\ \cot(\pi\ z)}-\frac{1}{z}}{2\ z}= \sum_{n=1}^{\infty} \frac{1}{z^{2}-n^{2}}$ (2)

Now compute the $\displaystyle \lim_{z \rightarrow 0} $ for both term of (2)...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
A 'very nice' series expansion is...

$\frac{1}{z}+2\ z\ \sum_{n=1}^{\infty} \frac{1}{z^{2}-n^{2}}$ (1)

How did you come up with this piece?
 
dwsmith said:
How did you come up with this piece?

Let's start with the 'infinite product'...

$\displaystyle \sin (\pi\ z)= \pi\ z\ \prod_{n=1}^{\infty} (1-\frac{z^{2}}{n^{2}})$ (1)

... and first obtain...

$\displaystyle \ln \sin (\pi z) = \ln (\pi\ z) + \sum_{n=1}^{\infty} \ln (1-\frac{z^{2}}{n^{2}})$ (2)

Now if we derive (2) we obtain...

$\displaystyle \frac{d}{d z}\ \ln \sin (\pi\ z)= \pi\ \cot(\pi\ z)= \frac{1}{z} + 2\ z\ \sum_{n=1}^{\infty} \frac{1}{z^{2}-n^{2}}$ (3)

Kind regards

$\chi$ $\sigma$
 
chisigma said:
$\displaystyle \frac{{\pi\ \cot(\pi\ z)}-\frac{1}{z}}{2\ z}= \sum_{n=1}^{\infty} \frac{1}{z^{2}-n^{2}}$ (2)

Now compute the $\displaystyle \lim_{z \rightarrow 0} $ for both term of (2)...

Kind regards

$\chi$ $\sigma$

I can't figure out how to take the limit of this function without using Mathematica.
 
Last edited:
dwsmith said:
I can't figure out how to take the limit of this function without using Mathematica.

Take into account that is...

$\displaystyle \pi\ \cot (\pi\ z)= \frac{1}{z} - \frac{\pi^{2}}{3}\ z - \frac{\pi^{4}}{45}\ z^{3}-...$

Kind regards

$\chi$ $\sigma$
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K