MHB How to Rewrite Absolute Value Expressions Without Absolute Values?

AI Thread Summary
The discussion focuses on rewriting the expression |x + 3| + 4|x + 3| for x < -3 without using absolute values. It establishes that for x < -3, |x + 3| equals -(x + 3). The correct transformation leads to 5|x + 3| being rewritten as -5(x + 3), simplifying to -5x - 15. Participants clarify that combining terms and maintaining the correct operations is essential in the rewriting process. The final expression is presented as -5(x + 3), effectively eliminating the absolute value.
mathdad
Messages
1,280
Reaction score
0
The | x | = x when x > or = 0.

The | x | = - x when x < 0.

Rewrite the following expression in a form that does not contain absolute value.

| x + 3 | + 4 | x + 3 |, where x < -3

-(x + 3) + 4 -(x + 3)

-x - 3 + 4 - x - 3

-2x - 6 + 4

-2x - 2

Correct?
 
Mathematics news on Phys.org
RTCNTC said:
The | x | = x when x > or = 0.

The | x | = - x when x < 0.

Rewrite the following expression in a form that does not contain absolute value.

| x + 3 | + 4 | x + 3 |, where x < -3

-(x + 3) + 4 -(x + 3)

-x - 3 + 4 - x - 3

-2x - 6 + 4

-2x - 2

Correct?

No, you've turned multiplication into addition...we are given the expression:

$$|x+3|+4|x+3|$$ where $$x<-3$$

Now, the first thing I would do is combine like terms:

$$5|x+3|$$

Let's look at:

$$x<-3$$

Add 3 to both sides:

$$x+3<0$$

And so our expression becomes:

$$5(-(x+3))=-5(x+3)$$

We can stop here because we have rewritten the expression in a form not involving absolute value, and there's no need to distribute in my opinion. :D
 
|x + 3 | + 4 | x + 3 |, where x < -3

-(x + 3) - 4(x + 3)

-x - 3 - 4x - 12

-5x - 15

-5(x + 3)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top