MHB How to Set Up a Triple Integral for Volume in the First Octant?

  • Thread starter Thread starter harpazo
  • Start date Start date
  • Tags Tags
    Volume
Click For Summary
The discussion focuses on setting up a triple integral to calculate the volume of a solid bounded by the equations z = 4 - x^2 and y = 4 - x^2 in the first octant. The correct bounds for the integral are established as 0 ≤ z ≤ 4 - y^2, 0 ≤ y ≤ 4 - x^2, and 0 ≤ x ≤ 2. Despite the detailed setup and calculations, there are discrepancies in the computed volume, with one participant obtaining 64/35 and another referencing a textbook answer of 256/15. A typo in the original equations was identified, clarifying that z should be defined as 4 - x^2 instead of 4 - y^2. The conversation highlights the importance of accuracy in mathematical setups and calculations.
harpazo
Messages
208
Reaction score
16
Use a triple integral to find the volume of the solid bounded by the graphs of the equations.

z = 4 - x^2, y = 4 - x^2, first octant

I need help setting up the triple integral for the volume. I will do the rest.
 
Last edited:
Physics news on Phys.org
Harpazo said:
Use a triple integral to find the volume of the solid bounded by the graphs of the equations.

z = 4 - y^2, y = 4 - x^2, first octant

I need help setting up the triple integral for the volume. I will do the rest.

Well as you know it's bounded in the first octant, that means all variables are nonnegative, so the lower bound for each variable is 0.

So we could have $\displaystyle \begin{align*} 0 \leq z \leq 4 - y^2 \end{align*}$.

Now as we know the upper bound for y is $\displaystyle \begin{align*} y = 4 - x^2 \end{align*}$, a parabola with x intercepts -2 and 2, that means $\displaystyle \begin{align*} 0 \leq y \leq 4 - x^2 \end{align*}$ and $\displaystyle \begin{align*} 0 \leq x \leq 2 \end{align*}$. Thus the volume integral is

$\displaystyle \begin{align*} V &= \int_0^2{\int_0^{4 - x^2}{\int_0^{4 - y^2}{\,\mathrm{d}z}\,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{\int_0^{4 - x^2}{\left[ z \right] _0^{4 - y^2}\,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{\int_0^{4 - x^2}{\left( 4 - y^2 - 0 \right) \,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{ \int_0^{4 - x^2}{ \left( 4 - y^2 \right) \,\mathrm{d}y } \,\mathrm{d}x} \\ &= \int_0^2{ \left[ 4\,y - \frac{1}{3}\,y^3 \right]_0^{4 - x^2} \,\mathrm{d}x } \\ &= \int_0^2{ \left\{ \left[ 4 \left( 4 - x^2 \right) - \frac{1}{3} \left( 4 - x^2 \right) ^3 \right] - \left[ 4 \left( 0 \right) - \frac{1}{3} \left( 0 \right) ^3 \right] \right\} \,\mathrm{d}x } \\ &= \int_0^2{ \left[ 16 - 4\,x^2 - \frac{1}{3} \left( 64 - 48\,x^2 + 12\,x^4 - x^6 \right) \right] \,\mathrm{d}x } \\ &= \int_0^2{ \left( 16 - 4\,x^2 - \frac{64}{3} + 16\,x^2 - 4\,x^4 + \frac{1}{3}\,x^6 \right) \,\mathrm{d}x } \\ &= \int_0^2{ \left( \frac{1}{3}\,x^6 - 4\,x^4 + 12\,x^2 - \frac{18}{3} \right) \,\mathrm{d}x } \\ &= \left[ \frac{1}{21}\,x^7 - \frac{4}{5}\,x^5 + 4\,x^3 - \frac{18}{3}\,x \right] _0^2 \\ &= \left[ \frac{1}{21}\left( 2 \right) ^7 - \frac{4}{5} \left( 2 \right) ^5 + 4 \left( 2 \right) ^3 - \frac{18}{3} \left( 2 \right) \right] - \left[ \frac{1}{21} \left( 0 \right) ^7 - \frac{4}{5} \left( 0 \right) ^5 + 4 \left( 0 \right) ^3 - \frac{18}{3} \left( 0 \right) \right] \\ &= \frac{128}{21} - \frac{128}{5} + 32 - \frac{36}{3} - 0 \\ &= \frac{640}{105} - \frac{2688}{105} + \frac{3360}{105} - \frac{1260}{105} \\ &= \frac{52}{105} \end{align*}$
 
Prove It said:
Well as you know it's bounded in the first octant, that means all variables are nonnegative, so the lower bound for each variable is 0.

So we could have $\displaystyle \begin{align*} 0 \leq z \leq 4 - y^2 \end{align*}$.

Now as we know the upper bound for y is $\displaystyle \begin{align*} y = 4 - x^2 \end{align*}$, a parabola with x intercepts -2 and 2, that means $\displaystyle \begin{align*} 0 \leq y \leq 4 - x^2 \end{align*}$ and $\displaystyle \begin{align*} 0 \leq x \leq 2 \end{align*}$. Thus the volume integral is

$\displaystyle \begin{align*} V &= \int_0^2{\int_0^{4 - x^2}{\int_0^{4 - y^2}{\,\mathrm{d}z}\,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{\int_0^{4 - x^2}{\left[ z \right] _0^{4 - y^2}\,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{\int_0^{4 - x^2}{\left( 4 - y^2 - 0 \right) \,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{ \int_0^{4 - x^2}{ \left( 4 - y^2 \right) \,\mathrm{d}y } \,\mathrm{d}x} \\ &= \int_0^2{ \left[ 4\,y - \frac{1}{3}\,y^3 \right]_0^{4 - x^2} \,\mathrm{d}x } \\ &= \int_0^2{ \left\{ \left[ 4 \left( 4 - x^2 \right) - \frac{1}{3} \left( 4 - x^2 \right) ^3 \right] - \left[ 4 \left( 0 \right) - \frac{1}{3} \left( 0 \right) ^3 \right] \right\} \,\mathrm{d}x } \\ &= \int_0^2{ \left[ 16 - 4\,x^2 - \frac{1}{3} \left( 64 - 48\,x^2 + 12\,x^4 - x^6 \right) \right] \,\mathrm{d}x } \\ &= \int_0^2{ \left( 16 - 4\,x^2 - \frac{64}{3} + 16\,x^2 - 4\,x^4 + \frac{1}{3}\,x^6 \right) \,\mathrm{d}x } \\ &= \int_0^2{ \left( \frac{1}{3}\,x^6 - 4\,x^4 + 12\,x^2 - \frac{18}{3} \right) \,\mathrm{d}x } \\ &= \left[ \frac{1}{21}\,x^7 - \frac{4}{5}\,x^5 + 4\,x^3 - \frac{18}{3}\,x \right] _0^2 \\ &= \left[ \frac{1}{21}\left( 2 \right) ^7 - \frac{4}{5} \left( 2 \right) ^5 + 4 \left( 2 \right) ^3 - \frac{18}{3} \left( 2 \right) \right] - \left[ \frac{1}{21} \left( 0 \right) ^7 - \frac{4}{5} \left( 0 \right) ^5 + 4 \left( 0 \right) ^3 - \frac{18}{3} \left( 0 \right) \right] \\ &= \frac{128}{21} - \frac{128}{5} + 32 - \frac{36}{3} - 0 \\ &= \frac{640}{105} - \frac{2688}{105} + \frac{3360}{105} - \frac{1260}{105} \\ &= \frac{52}{105} \end{align*}$

Fabulous work but the textbook answer is 256/15.
 
Harpazo said:
Fabulous work but the textbook answer is 256/15.

I think you are confusing this problem with another you posted. However, when I ask W|A to evaluate the triple integral set up by Prove It, it spits out:

$$I=\frac{64}{35}$$
 
MarkFL said:
I think you are confusing this problem with another you posted. However, when I ask W|A to evaluate the triple integral set up by Prove It, it spits out:

$$I=\frac{64}{35}$$

I just saw my typo. See my edited question.

z = 4 - x^2 not z = 4 - y^2
 
I also plugged into W.A. and the answer given is 64/35 but the textbook answer is 256/15.
 

Similar threads