How to Set Up a Triple Integral for Volume in the First Octant?

  • Context: MHB 
  • Thread starter Thread starter harpazo
  • Start date Start date
  • Tags Tags
    Volume
Click For Summary

Discussion Overview

The discussion focuses on setting up a triple integral to find the volume of a solid bounded by specific equations in the first octant. Participants explore different bounds and integrals related to the equations z = 4 - x^2 and y = 4 - x^2, as well as z = 4 - y^2.

Discussion Character

  • Technical explanation, Debate/contested, Mathematical reasoning

Main Points Raised

  • One participant proposes the volume integral setup as V = ∫₀² ∫₀⁴⁻ˣ² ∫₀⁴⁻ʸ² dz dy dx, detailing the bounds for z, y, and x.
  • Another participant suggests an alternative setup with z = 4 - y² and discusses the implications of the bounds in the first octant.
  • There is a correction regarding the equations used, with a participant noting a typo in their earlier post, clarifying that z = 4 - x² should be used instead of z = 4 - y².
  • Multiple participants mention using Wolfram Alpha (W|A) to evaluate the integral, with differing results: one participant claims W|A gives I = 64/35, while another states the textbook answer is 256/15.
  • Discrepancies in the results from W|A and the textbook answer are highlighted, with participants questioning the accuracy of their setups and calculations.

Areas of Agreement / Disagreement

Participants express disagreement regarding the correct volume calculation, with multiple competing views on the setup of the integral and the resulting values from evaluations. No consensus is reached on the correct answer.

Contextual Notes

Participants note potential confusion due to similar problems and the importance of correctly identifying the equations and bounds for the integral setup.

harpazo
Messages
208
Reaction score
16
Use a triple integral to find the volume of the solid bounded by the graphs of the equations.

z = 4 - x^2, y = 4 - x^2, first octant

I need help setting up the triple integral for the volume. I will do the rest.
 
Last edited:
Physics news on Phys.org
Harpazo said:
Use a triple integral to find the volume of the solid bounded by the graphs of the equations.

z = 4 - y^2, y = 4 - x^2, first octant

I need help setting up the triple integral for the volume. I will do the rest.

Well as you know it's bounded in the first octant, that means all variables are nonnegative, so the lower bound for each variable is 0.

So we could have $\displaystyle \begin{align*} 0 \leq z \leq 4 - y^2 \end{align*}$.

Now as we know the upper bound for y is $\displaystyle \begin{align*} y = 4 - x^2 \end{align*}$, a parabola with x intercepts -2 and 2, that means $\displaystyle \begin{align*} 0 \leq y \leq 4 - x^2 \end{align*}$ and $\displaystyle \begin{align*} 0 \leq x \leq 2 \end{align*}$. Thus the volume integral is

$\displaystyle \begin{align*} V &= \int_0^2{\int_0^{4 - x^2}{\int_0^{4 - y^2}{\,\mathrm{d}z}\,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{\int_0^{4 - x^2}{\left[ z \right] _0^{4 - y^2}\,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{\int_0^{4 - x^2}{\left( 4 - y^2 - 0 \right) \,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{ \int_0^{4 - x^2}{ \left( 4 - y^2 \right) \,\mathrm{d}y } \,\mathrm{d}x} \\ &= \int_0^2{ \left[ 4\,y - \frac{1}{3}\,y^3 \right]_0^{4 - x^2} \,\mathrm{d}x } \\ &= \int_0^2{ \left\{ \left[ 4 \left( 4 - x^2 \right) - \frac{1}{3} \left( 4 - x^2 \right) ^3 \right] - \left[ 4 \left( 0 \right) - \frac{1}{3} \left( 0 \right) ^3 \right] \right\} \,\mathrm{d}x } \\ &= \int_0^2{ \left[ 16 - 4\,x^2 - \frac{1}{3} \left( 64 - 48\,x^2 + 12\,x^4 - x^6 \right) \right] \,\mathrm{d}x } \\ &= \int_0^2{ \left( 16 - 4\,x^2 - \frac{64}{3} + 16\,x^2 - 4\,x^4 + \frac{1}{3}\,x^6 \right) \,\mathrm{d}x } \\ &= \int_0^2{ \left( \frac{1}{3}\,x^6 - 4\,x^4 + 12\,x^2 - \frac{18}{3} \right) \,\mathrm{d}x } \\ &= \left[ \frac{1}{21}\,x^7 - \frac{4}{5}\,x^5 + 4\,x^3 - \frac{18}{3}\,x \right] _0^2 \\ &= \left[ \frac{1}{21}\left( 2 \right) ^7 - \frac{4}{5} \left( 2 \right) ^5 + 4 \left( 2 \right) ^3 - \frac{18}{3} \left( 2 \right) \right] - \left[ \frac{1}{21} \left( 0 \right) ^7 - \frac{4}{5} \left( 0 \right) ^5 + 4 \left( 0 \right) ^3 - \frac{18}{3} \left( 0 \right) \right] \\ &= \frac{128}{21} - \frac{128}{5} + 32 - \frac{36}{3} - 0 \\ &= \frac{640}{105} - \frac{2688}{105} + \frac{3360}{105} - \frac{1260}{105} \\ &= \frac{52}{105} \end{align*}$
 
Prove It said:
Well as you know it's bounded in the first octant, that means all variables are nonnegative, so the lower bound for each variable is 0.

So we could have $\displaystyle \begin{align*} 0 \leq z \leq 4 - y^2 \end{align*}$.

Now as we know the upper bound for y is $\displaystyle \begin{align*} y = 4 - x^2 \end{align*}$, a parabola with x intercepts -2 and 2, that means $\displaystyle \begin{align*} 0 \leq y \leq 4 - x^2 \end{align*}$ and $\displaystyle \begin{align*} 0 \leq x \leq 2 \end{align*}$. Thus the volume integral is

$\displaystyle \begin{align*} V &= \int_0^2{\int_0^{4 - x^2}{\int_0^{4 - y^2}{\,\mathrm{d}z}\,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{\int_0^{4 - x^2}{\left[ z \right] _0^{4 - y^2}\,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{\int_0^{4 - x^2}{\left( 4 - y^2 - 0 \right) \,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{ \int_0^{4 - x^2}{ \left( 4 - y^2 \right) \,\mathrm{d}y } \,\mathrm{d}x} \\ &= \int_0^2{ \left[ 4\,y - \frac{1}{3}\,y^3 \right]_0^{4 - x^2} \,\mathrm{d}x } \\ &= \int_0^2{ \left\{ \left[ 4 \left( 4 - x^2 \right) - \frac{1}{3} \left( 4 - x^2 \right) ^3 \right] - \left[ 4 \left( 0 \right) - \frac{1}{3} \left( 0 \right) ^3 \right] \right\} \,\mathrm{d}x } \\ &= \int_0^2{ \left[ 16 - 4\,x^2 - \frac{1}{3} \left( 64 - 48\,x^2 + 12\,x^4 - x^6 \right) \right] \,\mathrm{d}x } \\ &= \int_0^2{ \left( 16 - 4\,x^2 - \frac{64}{3} + 16\,x^2 - 4\,x^4 + \frac{1}{3}\,x^6 \right) \,\mathrm{d}x } \\ &= \int_0^2{ \left( \frac{1}{3}\,x^6 - 4\,x^4 + 12\,x^2 - \frac{18}{3} \right) \,\mathrm{d}x } \\ &= \left[ \frac{1}{21}\,x^7 - \frac{4}{5}\,x^5 + 4\,x^3 - \frac{18}{3}\,x \right] _0^2 \\ &= \left[ \frac{1}{21}\left( 2 \right) ^7 - \frac{4}{5} \left( 2 \right) ^5 + 4 \left( 2 \right) ^3 - \frac{18}{3} \left( 2 \right) \right] - \left[ \frac{1}{21} \left( 0 \right) ^7 - \frac{4}{5} \left( 0 \right) ^5 + 4 \left( 0 \right) ^3 - \frac{18}{3} \left( 0 \right) \right] \\ &= \frac{128}{21} - \frac{128}{5} + 32 - \frac{36}{3} - 0 \\ &= \frac{640}{105} - \frac{2688}{105} + \frac{3360}{105} - \frac{1260}{105} \\ &= \frac{52}{105} \end{align*}$

Fabulous work but the textbook answer is 256/15.
 
Harpazo said:
Fabulous work but the textbook answer is 256/15.

I think you are confusing this problem with another you posted. However, when I ask W|A to evaluate the triple integral set up by Prove It, it spits out:

$$I=\frac{64}{35}$$
 
MarkFL said:
I think you are confusing this problem with another you posted. However, when I ask W|A to evaluate the triple integral set up by Prove It, it spits out:

$$I=\frac{64}{35}$$

I just saw my typo. See my edited question.

z = 4 - x^2 not z = 4 - y^2
 
I also plugged into W.A. and the answer given is 64/35 but the textbook answer is 256/15.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
9K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K