How to Set Up a Triple Integral for Volume in the First Octant?

  • Context: MHB 
  • Thread starter Thread starter harpazo
  • Start date Start date
  • Tags Tags
    Volume
Click For Summary
SUMMARY

The discussion focuses on setting up a triple integral to calculate the volume of a solid bounded by the equations z = 4 - x^2 and y = 4 - x^2 in the first octant. The correct bounds for the integral are established as 0 ≤ z ≤ 4 - y^2, 0 ≤ y ≤ 4 - x^2, and 0 ≤ x ≤ 2. The resulting volume integral is V = ∫₀² ∫₀⁴⁻ˣ² ∫₀⁴⁻ʸ² dz dy dx, which simplifies to a final volume of 64/35, although a discrepancy with a textbook answer of 256/15 is noted.

PREREQUISITES
  • Understanding of triple integrals in calculus
  • Familiarity with the concept of volume in three-dimensional space
  • Knowledge of bounding surfaces and regions in the first octant
  • Proficiency in evaluating integrals and applying limits
NEXT STEPS
  • Review the method for setting up triple integrals for volume calculations
  • Learn how to use software tools like Wolfram Alpha for integral evaluation
  • Study the differences in volume calculations based on bounding equations
  • Explore common errors in integral setup and evaluation
USEFUL FOR

Students and educators in calculus, particularly those focusing on multivariable calculus and integral applications in three-dimensional geometry.

harpazo
Messages
208
Reaction score
16
Use a triple integral to find the volume of the solid bounded by the graphs of the equations.

z = 4 - x^2, y = 4 - x^2, first octant

I need help setting up the triple integral for the volume. I will do the rest.
 
Last edited:
Physics news on Phys.org
Harpazo said:
Use a triple integral to find the volume of the solid bounded by the graphs of the equations.

z = 4 - y^2, y = 4 - x^2, first octant

I need help setting up the triple integral for the volume. I will do the rest.

Well as you know it's bounded in the first octant, that means all variables are nonnegative, so the lower bound for each variable is 0.

So we could have $\displaystyle \begin{align*} 0 \leq z \leq 4 - y^2 \end{align*}$.

Now as we know the upper bound for y is $\displaystyle \begin{align*} y = 4 - x^2 \end{align*}$, a parabola with x intercepts -2 and 2, that means $\displaystyle \begin{align*} 0 \leq y \leq 4 - x^2 \end{align*}$ and $\displaystyle \begin{align*} 0 \leq x \leq 2 \end{align*}$. Thus the volume integral is

$\displaystyle \begin{align*} V &= \int_0^2{\int_0^{4 - x^2}{\int_0^{4 - y^2}{\,\mathrm{d}z}\,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{\int_0^{4 - x^2}{\left[ z \right] _0^{4 - y^2}\,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{\int_0^{4 - x^2}{\left( 4 - y^2 - 0 \right) \,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{ \int_0^{4 - x^2}{ \left( 4 - y^2 \right) \,\mathrm{d}y } \,\mathrm{d}x} \\ &= \int_0^2{ \left[ 4\,y - \frac{1}{3}\,y^3 \right]_0^{4 - x^2} \,\mathrm{d}x } \\ &= \int_0^2{ \left\{ \left[ 4 \left( 4 - x^2 \right) - \frac{1}{3} \left( 4 - x^2 \right) ^3 \right] - \left[ 4 \left( 0 \right) - \frac{1}{3} \left( 0 \right) ^3 \right] \right\} \,\mathrm{d}x } \\ &= \int_0^2{ \left[ 16 - 4\,x^2 - \frac{1}{3} \left( 64 - 48\,x^2 + 12\,x^4 - x^6 \right) \right] \,\mathrm{d}x } \\ &= \int_0^2{ \left( 16 - 4\,x^2 - \frac{64}{3} + 16\,x^2 - 4\,x^4 + \frac{1}{3}\,x^6 \right) \,\mathrm{d}x } \\ &= \int_0^2{ \left( \frac{1}{3}\,x^6 - 4\,x^4 + 12\,x^2 - \frac{18}{3} \right) \,\mathrm{d}x } \\ &= \left[ \frac{1}{21}\,x^7 - \frac{4}{5}\,x^5 + 4\,x^3 - \frac{18}{3}\,x \right] _0^2 \\ &= \left[ \frac{1}{21}\left( 2 \right) ^7 - \frac{4}{5} \left( 2 \right) ^5 + 4 \left( 2 \right) ^3 - \frac{18}{3} \left( 2 \right) \right] - \left[ \frac{1}{21} \left( 0 \right) ^7 - \frac{4}{5} \left( 0 \right) ^5 + 4 \left( 0 \right) ^3 - \frac{18}{3} \left( 0 \right) \right] \\ &= \frac{128}{21} - \frac{128}{5} + 32 - \frac{36}{3} - 0 \\ &= \frac{640}{105} - \frac{2688}{105} + \frac{3360}{105} - \frac{1260}{105} \\ &= \frac{52}{105} \end{align*}$
 
Prove It said:
Well as you know it's bounded in the first octant, that means all variables are nonnegative, so the lower bound for each variable is 0.

So we could have $\displaystyle \begin{align*} 0 \leq z \leq 4 - y^2 \end{align*}$.

Now as we know the upper bound for y is $\displaystyle \begin{align*} y = 4 - x^2 \end{align*}$, a parabola with x intercepts -2 and 2, that means $\displaystyle \begin{align*} 0 \leq y \leq 4 - x^2 \end{align*}$ and $\displaystyle \begin{align*} 0 \leq x \leq 2 \end{align*}$. Thus the volume integral is

$\displaystyle \begin{align*} V &= \int_0^2{\int_0^{4 - x^2}{\int_0^{4 - y^2}{\,\mathrm{d}z}\,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{\int_0^{4 - x^2}{\left[ z \right] _0^{4 - y^2}\,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{\int_0^{4 - x^2}{\left( 4 - y^2 - 0 \right) \,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{ \int_0^{4 - x^2}{ \left( 4 - y^2 \right) \,\mathrm{d}y } \,\mathrm{d}x} \\ &= \int_0^2{ \left[ 4\,y - \frac{1}{3}\,y^3 \right]_0^{4 - x^2} \,\mathrm{d}x } \\ &= \int_0^2{ \left\{ \left[ 4 \left( 4 - x^2 \right) - \frac{1}{3} \left( 4 - x^2 \right) ^3 \right] - \left[ 4 \left( 0 \right) - \frac{1}{3} \left( 0 \right) ^3 \right] \right\} \,\mathrm{d}x } \\ &= \int_0^2{ \left[ 16 - 4\,x^2 - \frac{1}{3} \left( 64 - 48\,x^2 + 12\,x^4 - x^6 \right) \right] \,\mathrm{d}x } \\ &= \int_0^2{ \left( 16 - 4\,x^2 - \frac{64}{3} + 16\,x^2 - 4\,x^4 + \frac{1}{3}\,x^6 \right) \,\mathrm{d}x } \\ &= \int_0^2{ \left( \frac{1}{3}\,x^6 - 4\,x^4 + 12\,x^2 - \frac{18}{3} \right) \,\mathrm{d}x } \\ &= \left[ \frac{1}{21}\,x^7 - \frac{4}{5}\,x^5 + 4\,x^3 - \frac{18}{3}\,x \right] _0^2 \\ &= \left[ \frac{1}{21}\left( 2 \right) ^7 - \frac{4}{5} \left( 2 \right) ^5 + 4 \left( 2 \right) ^3 - \frac{18}{3} \left( 2 \right) \right] - \left[ \frac{1}{21} \left( 0 \right) ^7 - \frac{4}{5} \left( 0 \right) ^5 + 4 \left( 0 \right) ^3 - \frac{18}{3} \left( 0 \right) \right] \\ &= \frac{128}{21} - \frac{128}{5} + 32 - \frac{36}{3} - 0 \\ &= \frac{640}{105} - \frac{2688}{105} + \frac{3360}{105} - \frac{1260}{105} \\ &= \frac{52}{105} \end{align*}$

Fabulous work but the textbook answer is 256/15.
 
Harpazo said:
Fabulous work but the textbook answer is 256/15.

I think you are confusing this problem with another you posted. However, when I ask W|A to evaluate the triple integral set up by Prove It, it spits out:

$$I=\frac{64}{35}$$
 
MarkFL said:
I think you are confusing this problem with another you posted. However, when I ask W|A to evaluate the triple integral set up by Prove It, it spits out:

$$I=\frac{64}{35}$$

I just saw my typo. See my edited question.

z = 4 - x^2 not z = 4 - y^2
 
I also plugged into W.A. and the answer given is 64/35 but the textbook answer is 256/15.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
9K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K