Well as you know it's bounded in the first octant, that means all variables are nonnegative, so the lower bound for each variable is 0.
So we could have $\displaystyle \begin{align*} 0 \leq z \leq 4 - y^2 \end{align*}$.
Now as we know the upper bound for y is $\displaystyle \begin{align*} y = 4 - x^2 \end{align*}$, a parabola with x intercepts -2 and 2, that means $\displaystyle \begin{align*} 0 \leq y \leq 4 - x^2 \end{align*}$ and $\displaystyle \begin{align*} 0 \leq x \leq 2 \end{align*}$. Thus the volume integral is
$\displaystyle \begin{align*} V &= \int_0^2{\int_0^{4 - x^2}{\int_0^{4 - y^2}{\,\mathrm{d}z}\,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{\int_0^{4 - x^2}{\left[ z \right] _0^{4 - y^2}\,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{\int_0^{4 - x^2}{\left( 4 - y^2 - 0 \right) \,\mathrm{d}y}\,\mathrm{d}x} \\ &= \int_0^2{ \int_0^{4 - x^2}{ \left( 4 - y^2 \right) \,\mathrm{d}y } \,\mathrm{d}x} \\ &= \int_0^2{ \left[ 4\,y - \frac{1}{3}\,y^3 \right]_0^{4 - x^2} \,\mathrm{d}x } \\ &= \int_0^2{ \left\{ \left[ 4 \left( 4 - x^2 \right) - \frac{1}{3} \left( 4 - x^2 \right) ^3 \right] - \left[ 4 \left( 0 \right) - \frac{1}{3} \left( 0 \right) ^3 \right] \right\} \,\mathrm{d}x } \\ &= \int_0^2{ \left[ 16 - 4\,x^2 - \frac{1}{3} \left( 64 - 48\,x^2 + 12\,x^4 - x^6 \right) \right] \,\mathrm{d}x } \\ &= \int_0^2{ \left( 16 - 4\,x^2 - \frac{64}{3} + 16\,x^2 - 4\,x^4 + \frac{1}{3}\,x^6 \right) \,\mathrm{d}x } \\ &= \int_0^2{ \left( \frac{1}{3}\,x^6 - 4\,x^4 + 12\,x^2 - \frac{18}{3} \right) \,\mathrm{d}x } \\ &= \left[ \frac{1}{21}\,x^7 - \frac{4}{5}\,x^5 + 4\,x^3 - \frac{18}{3}\,x \right] _0^2 \\ &= \left[ \frac{1}{21}\left( 2 \right) ^7 - \frac{4}{5} \left( 2 \right) ^5 + 4 \left( 2 \right) ^3 - \frac{18}{3} \left( 2 \right) \right] - \left[ \frac{1}{21} \left( 0 \right) ^7 - \frac{4}{5} \left( 0 \right) ^5 + 4 \left( 0 \right) ^3 - \frac{18}{3} \left( 0 \right) \right] \\ &= \frac{128}{21} - \frac{128}{5} + 32 - \frac{36}{3} - 0 \\ &= \frac{640}{105} - \frac{2688}{105} + \frac{3360}{105} - \frac{1260}{105} \\ &= \frac{52}{105} \end{align*}$