MHB How to simplify a diabolical expression involving radicals

kalish1
Messages
79
Reaction score
0
A friend and I have been working on this problem for hours - how can the following expression be simplified analytically?

It equals $\frac{1}{2},$ and we have tried the following to no avail:

1. Substitution of $x = \sqrt{5}$
2. Substitution of $x = 2\sqrt{5}$
3. Substitution of $x = 5+\sqrt{5}$
4. Substitution of $x = \sqrt{5 + \sqrt{5}}$

Here goes:
$$\dfrac{\dfrac{\sqrt{5 + 2\sqrt{5}}}{2} + \dfrac{\sqrt{5(5 + 2\sqrt{5})}}{4} - \dfrac{\sqrt{10 + 2\sqrt{5}}}{8}}{\dfrac{\sqrt{5(5 + 2\sqrt{5})}}{4} + 5 \cdot \dfrac{\sqrt{5 + 2\sqrt{5}}}{4}}$$

Thanks in advance for any help.

This question has been crossposted here - fractions - How to simplify a diabolical expression involving radicals - Mathematics Stack Exchange
 
Mathematics news on Phys.org
Try the substitution $u = \sqrt{5 + 2 \sqrt{5}}$. Then you have:
$$\sqrt{5(5 + 2 \sqrt{5})} = \sqrt{5} u$$
$$\sqrt{10 + 2 \sqrt{5}} = \sqrt{u^2 + 5}$$
You'll still have a root but you'll be able to simplify the fraction I think.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
41
Views
5K
Replies
2
Views
1K
Replies
1
Views
2K
Replies
15
Views
2K
Replies
3
Views
1K
Replies
1
Views
7K
Replies
6
Views
2K
Replies
3
Views
1K
Replies
3
Views
1K
Replies
2
Views
2K
Back
Top