mathdad
- 1,280
- 0
How does (2sqrt{7})(sqrt{8 - 2sqrt{7}) become
2(7 - sqrt{7})?
2(7 - sqrt{7})?
MarkFL said:Well, we may write:
$$8-2\sqrt{7}=7-2\sqrt{7}+1=(\sqrt{7}-1)^2$$
And so:
$$\sqrt{8-2\sqrt{7}}=\sqrt{(\sqrt{7}-1)^2}=\sqrt{7}-1$$
Thus:
$$2\sqrt{7}\sqrt{8-2\sqrt{7}}=2\sqrt{7}(\sqrt{7}-1)=2(7-\sqrt{7})$$
RTCNTC said:Nicely done as always. What if I decided to multiply the two given radicals using the rule sqrt{a}*sqrt{b} = sqrt{ab}?
MarkFL said:Well if you did that, you would have:
$$2\sqrt{7}\sqrt{8-2\sqrt{7}}=2\sqrt{56-14\sqrt{7}}=2\sqrt{49-14\sqrt{7}+7}=2\sqrt{(7-\sqrt{7})^2}=2(7-\sqrt{7})$$
RTCNTC said:I get it except for 49 in the radical. Where did 49 come from?
MarkFL said:$$56=49+7$$