MHB How to Solve a Harmonic Function Problem Involving Partial Derivatives?

  • Thread starter Thread starter jaychay
  • Start date Start date
  • Tags Tags
    Function Harmonic
jaychay
Messages
58
Reaction score
0
har 3.png


Can you please help me how to do it ?
I am really struggle with this question.

Thank you in advance
 
Physics news on Phys.org
Hint: A harmonic conjugate function $v$ must have that $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$, so that the function given by $f(x+iy)=u(x,y)+iv(x,y)$ is holomorphic (complex differentiable).
 
Klaas van Aarsen said:
Hint: A harmonic conjugate function $v$ must have that $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$, so that the function given by $f(x+iy)=u(x,y)+iv(x,y)$ is holomorphic (complex differentiable).
Can you tell what is the next step that I should do please ?
 

Attachments

  • 69220B61-3C85-4285-AD6C-BD1AC20D167E.jpeg
    69220B61-3C85-4285-AD6C-BD1AC20D167E.jpeg
    321.8 KB · Views: 154
jaychay said:
Can you tell what is the next step that I should do please ?
It's a partial derivative (note the round d's). When we partially differentiate with respect to $x$, then that means that we treat $y$ as a constant.
More concisely:
$$\frac{\partial}{\partial x}(y)=0$$
So you can simplify your expression for $\frac{\partial u}{\partial x}$ a bit.

Next step is to integrate $\frac{\partial u}{\partial x}$ with respect to $y$ to find $v(x,y)$.
When we do so, we treat $x$ as a constant.

Let me give an example.
Suppose we have $u(x,y)=xy$. Then we have $\frac{\partial u}{\partial x}=y$.
And $v(x,y)=\int \frac{\partial u}{\partial x} \,dy = \int y\,dy = \frac 12y^2 + C(x)$, where $C(x)$ is some function of $x$.
We can verify by evaluating $\frac{\partial v}{\partial y} = \frac{\partial}{\partial y}\Big(\frac 12y^2 + C(x)\Big) = y$.
As we can see, we get indeed that $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$.
 
Last edited:
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top