MHB How to Solve a Linear Equation System Using Row Reduction?

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
https://www.physicsforums.com/attachments/9471​

ok lots of options to solve this but I would start by $R3-R1\to R3$

if I remember correctly if get a diagonal of ones and the rest zeros in A we will have B from Ax=B

$\tiny{USMA = United \,States\, Military\, Academy}$​
 
Last edited:
Physics news on Phys.org
karush said:
ok lots of options to solve this but I would start by $R3-R1\to R3$

You can start any way you like.
if I remember correctly if get a diagonal of ones and the rest zeros in A we will have B from Ax=B

?? You already had Ax=B when you started. Maybe Ix = B', where B' is a vector of solutions?
 
Ok W|A returned this but I don't know how you could get this in a few minutes on an intrance exam

$A=\left[ \begin{array}{cccc}
1 & 0 &0 & \frac{25}{37} \\
0 & 1 & 0 & \frac{4}{37} \\
0 &0 &1 & \frac{13}{37}
\end{array} \right]$
 
karush said:
Ok W|A returned this but I don't know how you could get this in a few minutes on an intrance exam

$A=\left[ \begin{array}{cccc}
1 & 0 &0 & \frac{25}{37} \\
0 & 1 & 0 & \frac{4}{37} \\
0 &0 &1 & \frac{13}{37}
\end{array} \right]$

Practice?
 
this is more practice than I'm in the mood for:(

$R_1=\dfrac{R_1}{2}\left[ \begin{array}{ccc|c} 1 & \frac{5}{2} & 3 & 2 \\ 7 & 8 & 4 & 7 \\ 3 & 2 & 5 & 4 \end{array} \right]R_2=R_2-7R_1\left[ \begin{array}{rrr|r} 1 & \frac{5}{2} & 3 & 2 \\ 0 & - \frac{19}{2} & -17 & -7 \\ 3 & 2 & 5 & 4 \end{array} \right]$

$R_3=R_3-3R_1\left[ \begin{array}{rrr|r} 1 & \frac{5}{2} & 3 & 2 \\ 0 & - \frac{19}{2} & -17 & -7 \\ 0 & - \frac{11}{2} & -4 & -2 \end{array} \right] R_2=- \dfrac{2}{19}\cdot R_2\left[ \begin{array}{rrr|r} 1 & \frac{5}{2} & 3 & 2 \\0 & 1 & \frac{34}{19} & \frac{14}{19} \\ 0 & - \frac{11}{2} & -4 & -2 \end{array} \right]$

$R_1=R_1-\dfrac{5}{2}\cdot R_2
\left[ \begin{array}{rrr|r} 1 & 0 & - \dfrac{28}{19} & \dfrac{3}{19} \\ 0 & 1 & \dfrac{34}{19} & \dfrac{14}{19} \\ 0 & - \dfrac{11}{2} & -4 & -2 \end{array} \right]R_3=R_3+\dfrac{11}{2}R_2
\left[ \begin{array}{rrr|r} 1 & 0 & - \dfrac{28}{19} & \dfrac{3}{19} \\ 0 & 1 & \dfrac{34}{19} & \dfrac{14}{19} \\ 0 & 0 & \dfrac{111}{19} & \dfrac{39}{19} \end{array} \right]$
$R_3=\dfrac{19}{111}R_3
\left[ \begin{array}{rrr|r} 1 & 0 & - \dfrac{28}{19} & \dfrac{3}{19} \\ 0 & 1 & \dfrac{34}{19} & \dfrac{14}{19} \\ 0 & 0 & 1 & \dfrac{13}{37} \end{array} \right]
R_2=R_2-\left(\frac{34}{19}\right)R_3
\left[ \begin{array}{rrr|r} 1 & 0 & 0 & \dfrac{25}{37} \\ 0 & 1 & 0 & \dfrac{4}{37} \\ 0 & 0 & 1 & \dfrac{13}{37} \end{array} \right]$
 
Last edited:
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
2K
Replies
1
Views
4K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
12K