Rorshach
- 135
- 0
Oh right, I confused just derivative with applying the operator:P
That's not correct. Where's you get ##\frac{\partial x}{\partial x}## from?Rorshach said:##-i\hbar x\frac{\partial x}{\partial x}##
Now use the fact that ##-\hbar^2 = (-ih)^2## and rewrite the final result in terms of ##\hat{p}_x## to show that ##[\hat{p}_x^2,\hat{x}] = (-i\hbar)2\hat{p}_x##.Rorshach said:I think I finally did it. Here it goes:
$$-i\hbar\frac{\partial }{\partial x}(-i\hbar\frac{\partial x\psi}{\partial x}+i\hbar x\frac{\partial \psi}{\partial x})+(-i\hbar\frac{\partial xf}{\partial x}+i\hbar x\frac{\partial f}{\partial x}),$$ where we let ##f=-i\hbar\frac{\partial \psi}{\partial x}##. Then it goes on:
$$-i\hbar\frac{\partial }{\partial x}(-i\hbar(x\frac{\partial \psi}{\partial x}+\psi\frac{\partial x}{\partial x})+i\hbar x\frac{\partial \psi}{\partial x})+(-i\hbar(x\frac{\partial f}{\partial x}+f\frac{\partial x}{\partial x})+i\hbar x\frac{\partial f}{\partial x})$$
$$-i\hbar\frac{\partial }{\partial x}(-i\hbar x\frac{\partial \psi}{\partial x}-i\hbar\psi+i\hbar x\frac{\partial \psi}{\partial x})+({\color{red}-}i\hbar x\frac{\partial f}{\partial x}-i\hbar f+i\hbar x\frac{\partial f}{\partial x})$$
$$-\hbar^2\frac{\partial \psi}{\partial x}+(-i\hbar f)
= \hbar^2\frac{\partial \psi}{\partial x}-{\color{red} {(i\hbar)}}(-i\hbar\frac{\partial \psi}{\partial x})
= -\hbar^2\frac{\partial \psi}{\partial x}-\hbar^2\frac{\partial \psi}{\partial x}
= -2\hbar^{\color{red}2} \frac{\partial \psi}{\partial x}$$.
Please tell me that this time I am right.