How to Solve Commutators Using the Jacobian?

Click For Summary
The discussion centers on solving commutators involving position and momentum operators, specifically using the Jacobi identity and other commutation relations. Participants express confusion about the application of the Jacobi identity and the correct order of operations when dealing with these operators. It is clarified that the momentum operator acts on everything to its right, which is crucial for accurate calculations. The importance of substituting the known commutation relations, such as [x, px] = iħ, is emphasized to simplify the expressions. Ultimately, understanding the operator behavior and the correct application of commutation rules is essential for solving the given problems effectively.
  • #31
You need to use \hbar, not /hbar.

I'm going to use hats over the operators so you can keep track of what's going on. The first thing on the right is ##\hat{p}_x \psi = -i\hbar \frac{\partial \psi}{\partial x}##, so
$$\hat{p}_x \hat{x} \hat{p}_x \psi = \hat{p}_x \hat{x} (-i\hbar)\frac{\partial \psi}{\partial x} = -i\hbar\,\hat{p}_x \hat{x} \frac{\partial \psi}{\partial x}.$$
Now, again, evaluate the what the rightmost operator does.
 
Physics news on Phys.org
  • #32
if it is supposed to be \frac{∂ψ}{∂x}, then I don't know what to do with this. If it is -i\hbar \frac{∂}{∂x} x, then it is just -i\hbar
 
Last edited:
  • #33
What is the operator farthest on the right in
$$-i\hbar\,\hat{p}_x \hat{x} \frac{\partial \psi}{\partial x}?$$
 
Last edited:
  • #34
It is \frac{∂ψ}{∂x}
 
  • #35
I meant a hatted operator. ##\psi'(x)## is just a function.
 
  • #36
Then it is \hat{x}, but I don't know its formula, or if it even has one besides \hat{x}
 
Last edited:
  • #37
In the coordinate basis, which is the basis you're working in, the operator ##\hat{x}## when acting on a function ##f(x)## simply multiplies that function by ##x##. That is to say, ##\hat{x}f(x) = xf(x)##.
 
  • #38
So in this case it does nothing that would influence its right side, except for multiplication, right? Then I only see multiplication of two operators, \hat{p}x, which is just -i\hbar, and x\hat{p}\psi. What can I do with this?
 
  • #39
No. Say A and B are matrices and x is a vector. What you keep doing is equivalent to saying ABx = (Ax)(Bx). That's not how it works.

Just work right to left and remember that ##\hat{p}## acts on everything to its right.
 
  • #40
the only thing I see is -i\hbar\frac{∂x}{∂x}\frac{∂ψ}{∂x}. Where am I making mistake?
 
  • #41
##\hat{p}## acts on everything to its right.
 
  • #42
-i\hbar\frac{∂x\frac{∂\psi}{∂x}}{∂x}?
 
  • #43
Gosh, I finally understood my mistake:P I just treated the whole thing as simple standard multiplication, just like I should do in normal mathematical case, however in case of operators I should just multiply every operator by the variable on its right side:D In normal situation it seems illogical, looking like this: ##(A+B)CD=(AD+BD)CD##, but in case of operators it should look like this ##(-i\hbar\frac{\partial }{\partial x}x+i\hbar\frac{\partial}{\partial x})(-i\hbar\frac{\partial }{\partial x})\psi=(-i\hbar(x\frac{\partial \psi}{\partial x}+\psi\frac{\partial x}{\partial x})+i\hbar\frac{\partial \psi}{\partial x})(-i\hbar\frac{\partial \psi}{\partial x})=(-i\hbar x\frac{\partial \psi}{\partial x}-i\hbar\psi i\hbar x\frac{\partial \psi}{\partial x})(-i\hbar\frac{\partial \psi}{\partial x})=(-i\hbar\psi)(-i\hbar\frac{\partial \psi}{\partial x})=-\hbar^2\psi \frac{\partial \psi}{\partial x}=-\hbar^2\frac{\partial }{\partial x}##
 
  • #44
Unfortunately, I still do not know how to solve it using Jacobi identity... I am not even sure if I interpret it correctly. I tried to use the commutator ##[p^2_x,x]=[p_x p_x,x]##, use the given fact ##[p_x,x]=-i\hbar##, or ##[x,p_x]=i\hbar## and substitute it to Jacobi identity formula ##[p_x,[p_x,x]]+[p_x,[x,p_x]]+[x[p_x,p_x]]=0##, but those commutators zero themselves even before I sum them up. How to do this?
 
Last edited:
  • #45
Rorshach said:
Gosh, I finally understood my mistake:P I just treated the whole thing as simple standard multiplication, just like I should do in normal mathematical case, however in case of operators I should just multiply every operator by the variable on its right side:D In normal situation it seems illogical, looking like this: ##(A+B)CD=(AD+BD)CD##, but in case of operators it should look like this ##(-i\hbar\frac{\partial }{\partial x}x+i\hbar\frac{\partial}{\partial x})(-i\hbar\frac{\partial }{\partial x})\psi=(-i\hbar(x\frac{\partial \psi}{\partial x}+\psi\frac{\partial x}{\partial x})+i\hbar\frac{\partial \psi}{\partial x})(-i\hbar\frac{\partial \psi}{\partial x})##
Unfortunately, you haven't understood your mistake. You're still doing the same thing you did before. It doesn't work at all like (A+B)CD = (AD + BD)CD.

After you apply the rightmost ##\hat{p}##, you have ##\hat{p}\hat{x}\,\left(-i\hbar \frac{\partial\psi}{\partial x}\right)##. Now ##-i\hbar\frac{\partial\psi}{\partial x}## is just another function. Let's call it ##f##. So now you have ##\hat{p}\hat{x}f##. What is ##\hat{x}f## equal to? Call that result ##g##. Then apply ##\hat{p}## to ##g##. What do you get?
 
  • #46
##-i\hbar\frac{\partial g}{\partial x}##?
 
  • #47
Ignoring the constants, yes, that's what you get. So what's the derivative of g equal to?
 
  • #48
##-i\hbar\frac{\partial \psi}{\partial x}##?
 
  • #49
No. What is ##g## equal to?
 
  • #50
##-i\hbar x\frac{\partial x}{\partial x}##
 
  • #51
Oh right, I confused just derivative with applying the operator:P
 
  • #52
it came down to ##-i\hbar(\frac{\partial g}{\partial x})=-i\hbar (-i\hbar\frac{\partial \psi}{\partial x})##, which is basically a half of the result, so it is correct, right?
 
Last edited:
  • #53
Rorshach said:
##-i\hbar x\frac{\partial x}{\partial x}##
That's not correct. Where's you get ##\frac{\partial x}{\partial x}## from?
 
  • #54
I just made a mistake while writing the result in code, it should be ##-i\hbar x\frac{\partial \psi}{\partial x}##
 
  • #55
OK, so what do you get when you differentiate that?
 
  • #56
##-i\hbar\frac{\partial \psi}{\partial x}##
 
  • #57
How'd you get that?
 
  • #58
I differentiated it by x, but from my experience I again made a mistake somewhere...
 
  • #59
What if you wrote ##g=xf##? What do you get when you differentiate g?
 
  • #60
oh shoot... it is ##x\frac{\partial f}{\partial x}+f##... but it only complicates the matter, now I have ##-i\hbar(x\frac{\partial f}{\partial x}-i\hbar\frac{\partial \psi}{\partial x})##
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
690
  • · Replies 3 ·
Replies
3
Views
10K
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
7K