MHB How to Solve Exponential Equations?

  • Thread starter Thread starter Alexeia
  • Start date Start date
  • Tags Tags
    Exponential
Alexeia
Messages
9
Reaction score
0
Hi,

I attached a pdf with a question and its answers. I don't understand the whole thing basically, e.g what their asking for..

1.2.1;1.2.2;1.2.3

1.2.2 - How many solutions for x will the equation have..?
1.2.3 - Largest integer for which it will have solutions..?

Any explanations will help..

Thanks
 

Attachments

Mathematics news on Phys.org
Here are the questions:

1.2 Given: $$2^x+2^{x+2}=-5y+20$$

1.2.1 Express $$2^x$$ in terms of $y$.

Here, you are expected to solve the equation for $2^x$. Recall the property of exponents:

$$a^{b+c}=a^ba^c$$

which means:

$$2^{x+2}=2^x2^2=4\cdot2^x$$

So now the equation becomes:

$$2^x+4\cdot2^x=-5y+20$$

Can you continue? Combine the two like terms on the left side as your first step.

After we get this part solved, where you understand it, we can move on to the remaining parts, as they depend on this part.
 
MarkFL said:
Here are the questions:

1.2 Given: $$2^x+2^{x+2}=-5y+20$$

1.2.1 Express $$2^x$$ in terms of $y$.

Here, you are expected to solve the equation for $2^x$. Recall the property of exponents:

$$a^{b+c}=a^ba^c$$

which means:

$$2^{x+2}=2^x2^2=4\cdot2^x$$

So now the equation becomes:

$$2^x+4\cdot2^x=-5y+20$$

Can you continue? Combine the two like terms on the left side as your first step.

After we get this part solved, where you understand it, we can move on to the remaining parts, as they depend on this part.
Awesome, the way the questioned was asked confused me.. Another way of saying it then is - Solve for 2^x.. But it doesn't yet mean to solve for x right?

Then Question 1.2.3, can you shed some light on that one pls?
 
Alexeia said:
Then Question 1.2.3, can you shed some light on that one pls?
1.2 Given:
\[
2^x+2^{x+2}=-5y+20\tag{1}
\]
...
1.2.3: Solve for $x$ if $y$ is the largest possible integer value for which (1) will have solutions.

Question 1.2.3 (admittedly, a bit convoluted) says the following. Let $P(y)$ be some property of $y$ (to be discussed later). Find the largest integer $y$ such that $P(y)$ holds and call it $y_{\text{max}}$. Now solve (1) for $x$ assuming that $y=y_{\text{max}}$.

The property $P(y)$ in question is that (1) has a solution $x$ for a given $y$. Note that the equation
\[
2^x+2^{x+2}=z
\]
has some solution $x$ iff $z>0$. Therefore,
\[
P(y)\text{ holds }\iff -5y+20>0 \iff y<4.
\]
The largest $y_{\text{max}}$ satisfying this property is 3 (since the inequality is strict). Therefore, you are supposed to solve (1) when $y=3$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top