MHB How to solve following optimization problem?

  • Thread starter Thread starter user_01
  • Start date Start date
  • Tags Tags
    Optimization
user_01
Messages
5
Reaction score
0
The following is the mathematical expression for my model's rate expression. Variables $x,y$ are the controlling parameter, while the rest are positive constants.

$$\max_{x,y} \ ax + by^3 \ (s.t. \ 0\leq x \leq 1,\ 0\leq y\leq1)$$

Can I mathematically say that it is a convex problem within the limits of variables $x,y$?

The graph for the equation strictly follows the definition of convexity.
I have learned to solve the problems with KKT method, but I cannot understand how to resolve the inequality constraints $0 \leq (x,y) \leq 1$.
 
Mathematics news on Phys.org
user_01 said:
The following is the mathematical expression for my model's rate expression. Variables $x,y$ are the controlling parameter, while the rest are positive constants.
$$\max_{x,y} \ ax + by^3 \ (s.t. \ 0\leq x \leq 1,\ 0\leq y\leq1)$$
Can I mathematically say that it is a convex problem within the limits of variables $x,y$?
The graph for the equation strictly follows the definition of convexity.

Wiki explains that a convex problem is the optimization of a convex function over a convex set.
So it is indeed a convex problem as both conditions are satisfied.

I have learned to solve the problems with KKT method, but I cannot understand how to resolve the inequality constraints $0 \leq (x,y) \leq 1$.
Those inequality constraints translate into the constraint function $\mathbf g(x,y) = (-x,-y,x-1,y-1)$ with $g_i(x,y) \le 0$.

Btw, we can already see by inspection that the optimum must be at $(x,y)=(1,1)$ with value $a+b$.
 
The derivative of $ax+ by^3$ with respect to x is the constant a. If a is not 0, that derivative is never 0 so any max or min must be on the boundary. That boundary consists of 4 pieces

1) x= 0, $0\le y\le 1$. The function reduces to $by^3$ on $0\le y\le 1$ which obviously has its minimum value, 0, at y= 0 and maximum value, b, at y= 1.
2) y= 0, $0\le x\le 1$. The function reduces to $ax$ on $0\le x\le 1$ which obviouslly has its minimum value, 0, at x= 0 and maximum value , a, a x=1.
3) x= 1, $0\le y\le 1$. The function reduces to $a+ by^3$ on $0\le y\le 1$ which obviouly has its minimum, a, at y= 0 and its maximum a+ b at y= 1.
4. y= 1, $0\le x\le 1$. The function reduces to $ax+ b$ on $0\le x\le 1$ which obviouslly has its minimum, b, at x= 0 and its maximum, a+ b at x= 1.

Over all, then, the maximum is a+ b which is achieved at (1, 1). The minimum value is 0 which is achieved at (0, 0).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top