MHB How to solve for x using 2nd derivative?

  • Thread starter Thread starter gevni
  • Start date Start date
  • Tags Tags
    Derivative
Click For Summary
To find the minimum value of the cost function, the first derivative must equal zero, leading to the equation x = √(CT/(A-B)), assuming A is greater than B. The second derivative, which is positive, confirms that this point is indeed a minimum. The confusion arose regarding the interpretation of the second derivative equating to zero, which does not yield a valid solution for x. The discussion emphasizes that the minimum occurs at the positive square root, as all variables involved are greater than zero. Understanding these derivative conditions is crucial for solving for x effectively.
gevni
Messages
25
Reaction score
0
Hi, I am trying to find the minimum root (x) of one formula. For that, I took 2nd derivative and got this equation.

\[ 2 \times A \times (\frac{T}{x^3})=0 \]

Here A,T,x are greater then 0. I don't know how to proceed further, how to solve it for x? Can you please guide me?
 
Physics news on Phys.org
Can you post the original problem in its entirety?
 
Ok! so I have a formula for cost calculation. I have to find the value of x where that formula will gives minimum value as cost should not be equal to zero, it has some minimum value.
The original formula is
\[ cost= A\times x+ B \times(n-x)+ C\times \frac{T}{x} \]

As I am only interested in minimum value of this formula. So I took 2nd derivative of it. That results in ;

\[ 2 \times C \times (\frac{T}{x^3})=0 \]

Here, A,B,C,T,n and x are greater then zero and A,B,C,T,n are known variables. I don't know how to solve it for x after 2nd derivative ?
 
$y = Ax + B(n-x) + \dfrac{CT}{x}$ will have a minimum at the x-value where $y' = 0$ and $y'' > 0$

$y' = 0$ at $x = \sqrt{\dfrac{CT}{A-B}}$, assuming $A > B$

$y'' = \dfrac{2CT}{x^3} > 0$, so the minimum occurs at the x-value stated above
 
skeeter said:
$y = Ax + B(n-x) + \dfrac{CT}{x}$ will have a minimum at the x-value where $y' = 0$ and $y'' > 0$

$y' = 0$ at $x = \sqrt{\dfrac{CT}{A-B}}$, assuming $A > B$

$y'' = \dfrac{2CT}{x^3} > 0$, so the minimum occurs at the x-value stated above

Thank you soooo much for helping. I was confused about whether I have to use
$y' = 0$ at $x = \sqrt{\dfrac{CT}{A-B}}$
or
$y' = 0$ at $x = - \sqrt{\dfrac{CT}{A-B}}$

And your explanation made it easy to understand.
 
gevni said:
Thank you soooo much for helping. I was confused about whether I have to use
$y' = 0$ at $x = \sqrt{\dfrac{CT}{A-B}}$
or
$y' = 0$ at $x = - \sqrt{\dfrac{CT}{A-B}}$

And your explanation made it easy to understand.

you stated ...

Here, A,B,C,T,n and x are greater then zero

positive square root, correct?
 
gevni said:
Hi, I am trying to find the minimum root (x) of one formula. For that, I took 2nd derivative and got this equation.

\[ 2 \times A \times (\frac{T}{x^3})=0 \]

Here A,T,x are greater then 0. I don't know how to proceed further, how to solve it for x? Can you please guide me?
This is the same as \[\frac{2AT}{x^3}= 0 \].
But a fraction is 0 only when the numerator is 0. There is no value of x that makes it 0!
 
gevni said:
Ok! so I have a formula for cost calculation. I have to find the value of x where that formula will gives minimum value as cost should not be equal to zero, it has some minimum value.
The original formula is
\[ cost= A\times x+ B \times(n-x)+ C\times \frac{T}{x} \]

As I am only interested in minimum value of this formula. So I took 2nd derivative of it. That results in ;

\[ 2 \times C \times (\frac{T}{x^3})=0 \]

Here, A,B,C,T,n and x are greater then zero and A,B,C,T,n are known variables. I don't know how to solve it for x after 2nd derivative ?
A minimum for f(x) can occur where the first derivative is 0 and the second derivative is positive, not where the second derivative is 0!
 
skeeter said:
you stated ...
positive square root, correct?
yes
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
5
Views
1K
Replies
1
Views
2K
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K