How to solve for x using 2nd derivative?

  • Context: MHB 
  • Thread starter Thread starter gevni
  • Start date Start date
  • Tags Tags
    Derivative
Click For Summary
SUMMARY

The discussion focuses on finding the minimum value of a cost function defined as cost = A * x + B * (n - x) + C * (T / x). The user derived the second derivative, resulting in 2 * C * (T / x^3) = 0, but was confused about how to proceed. The correct approach is to set the first derivative y' = 0 at x = sqrt(CT / (A - B)), assuming A > B, and confirm that the second derivative y'' = (2CT / x^3) > 0 indicates a minimum.

PREREQUISITES
  • Understanding of calculus, specifically derivatives and their applications.
  • Familiarity with cost functions and optimization techniques.
  • Knowledge of algebraic manipulation, particularly with square roots and fractions.
  • Basic understanding of the conditions for minima in functions.
NEXT STEPS
  • Study the application of the first and second derivative tests in optimization problems.
  • Learn about cost function analysis in economics or operations research.
  • Explore the implications of variable constraints in optimization scenarios.
  • Investigate the use of numerical methods for solving non-linear equations.
USEFUL FOR

Students and professionals in mathematics, economics, and engineering who are involved in optimization problems, particularly those dealing with cost functions and calculus.

gevni
Messages
25
Reaction score
0
Hi, I am trying to find the minimum root (x) of one formula. For that, I took 2nd derivative and got this equation.

\[ 2 \times A \times (\frac{T}{x^3})=0 \]

Here A,T,x are greater then 0. I don't know how to proceed further, how to solve it for x? Can you please guide me?
 
Physics news on Phys.org
Can you post the original problem in its entirety?
 
Ok! so I have a formula for cost calculation. I have to find the value of x where that formula will gives minimum value as cost should not be equal to zero, it has some minimum value.
The original formula is
\[ cost= A\times x+ B \times(n-x)+ C\times \frac{T}{x} \]

As I am only interested in minimum value of this formula. So I took 2nd derivative of it. That results in ;

\[ 2 \times C \times (\frac{T}{x^3})=0 \]

Here, A,B,C,T,n and x are greater then zero and A,B,C,T,n are known variables. I don't know how to solve it for x after 2nd derivative ?
 
$y = Ax + B(n-x) + \dfrac{CT}{x}$ will have a minimum at the x-value where $y' = 0$ and $y'' > 0$

$y' = 0$ at $x = \sqrt{\dfrac{CT}{A-B}}$, assuming $A > B$

$y'' = \dfrac{2CT}{x^3} > 0$, so the minimum occurs at the x-value stated above
 
skeeter said:
$y = Ax + B(n-x) + \dfrac{CT}{x}$ will have a minimum at the x-value where $y' = 0$ and $y'' > 0$

$y' = 0$ at $x = \sqrt{\dfrac{CT}{A-B}}$, assuming $A > B$

$y'' = \dfrac{2CT}{x^3} > 0$, so the minimum occurs at the x-value stated above

Thank you soooo much for helping. I was confused about whether I have to use
$y' = 0$ at $x = \sqrt{\dfrac{CT}{A-B}}$
or
$y' = 0$ at $x = - \sqrt{\dfrac{CT}{A-B}}$

And your explanation made it easy to understand.
 
gevni said:
Thank you soooo much for helping. I was confused about whether I have to use
$y' = 0$ at $x = \sqrt{\dfrac{CT}{A-B}}$
or
$y' = 0$ at $x = - \sqrt{\dfrac{CT}{A-B}}$

And your explanation made it easy to understand.

you stated ...

Here, A,B,C,T,n and x are greater then zero

positive square root, correct?
 
gevni said:
Hi, I am trying to find the minimum root (x) of one formula. For that, I took 2nd derivative and got this equation.

\[ 2 \times A \times (\frac{T}{x^3})=0 \]

Here A,T,x are greater then 0. I don't know how to proceed further, how to solve it for x? Can you please guide me?
This is the same as \[\frac{2AT}{x^3}= 0 \].
But a fraction is 0 only when the numerator is 0. There is no value of x that makes it 0!
 
gevni said:
Ok! so I have a formula for cost calculation. I have to find the value of x where that formula will gives minimum value as cost should not be equal to zero, it has some minimum value.
The original formula is
\[ cost= A\times x+ B \times(n-x)+ C\times \frac{T}{x} \]

As I am only interested in minimum value of this formula. So I took 2nd derivative of it. That results in ;

\[ 2 \times C \times (\frac{T}{x^3})=0 \]

Here, A,B,C,T,n and x are greater then zero and A,B,C,T,n are known variables. I don't know how to solve it for x after 2nd derivative ?
A minimum for f(x) can occur where the first derivative is 0 and the second derivative is positive, not where the second derivative is 0!
 
skeeter said:
you stated ...
positive square root, correct?
yes
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K