How to solve summation equations with different indices

  • Thread starter Thread starter musicgold
  • Start date Start date
  • Tags Tags
    Indices Summation
Click For Summary
SUMMARY

This discussion focuses on solving summation equations with different indices, specifically analyzing the left-hand side (LHS) and right-hand side (RHS) of an equation involving alternating series. The LHS is expressed as a product of terms involving k-1, k, and k+1, leading to oscillating sums that approach a limit. The participants clarify that both sides of the equation utilize the same summation index, k, and emphasize the importance of recognizing the relationship between the number of terms on each side. The discussion concludes with insights on how to manipulate the summation to derive equivalent expressions for both sides.

PREREQUISITES
  • Understanding of alternating series and their convergence
  • Familiarity with summation notation and indices
  • Basic algebraic manipulation of series
  • Knowledge of mathematical induction for proving identities
NEXT STEPS
  • Explore the properties of alternating series and their convergence criteria
  • Learn about manipulating summation indices in mathematical expressions
  • Study mathematical induction techniques for proving summation identities
  • Investigate the relationship between series and their limits in calculus
USEFUL FOR

Mathematicians, students studying calculus or series, and anyone interested in advanced summation techniques and mathematical proofs.

musicgold
Messages
303
Reaction score
19
Homework Statement
I need to prove the equation below. What scares me is the fact that the LHS and RHS have different summation indices.
Relevant Equations
See below
1569938319222.png


To analyze the LHS of this equation, I used (k-1) , k and (K+1) to get

## \frac {(-1)^{k-1} } { (k-1)} \ . \frac {(-1)^k} { (k)} \ . \frac {(-1)^{k+1} } { (k+1)} \ ##

Nothing cancels out in these terms and the sign of each term is the opposite of the previous term.

I calculated the LHS for a k = 1, 2, 3, 4, 5, 6 . The sum is = 1 -1/2 + 1/3 -1/4 + 1/5 -1/6. It looks like an oscillating sum that is going towards 2/3.

How can I proceed from here to get to the RHS?

Thanks
 
Physics news on Phys.org
Hi,

musicgold said:
the fact that the LHS and RHS have different summation indices.
they don't: on both sides ##k## is the summation index.

To analyze the LHS of this equation, I used (k-1) , k and (K+1) to get

## \frac {(-1)^{k-1} } { (k-1)} \ . \frac {(-1)^k} { (k)} \ . \frac {(-1)^{k+1} } { (k+1)} \ ##

Nothing cancels out in these terms
I don't see what you are doing here ...

musicgold said:
I calculated the LHS for a k = 1, 2, 3, 4, 5, 6 . The sum is = 1 -1/2 + 1/3 -1/4 + 1/5 -1/6
So here you wrote out (but did not add up) the LHS for ##n=3##

Now do the same for the RHS -- I get 37/60

Finally, recognize the pattern and see that an increase in ##n## increases both sides by the same amount.
 
BvU said:
...

Now do the same for the RHS -- I get 37/60

Finally, recognize the pattern and see that an increase in ##n## increases both sides by the same amount.

I am trying to get to the RHS part of the original equation. I don't know how to change the summation index. I think it involves removing half the terms.
 
There is no need to change anything. ##n## is the 'independent variable': for each value of ##n##, het LHS gives a value for the sum, and so does the RHS.

So: for ##n=3## you have an LHS value, now fill in ##n=3## on the RHS and evaluate the sum
 
musicgold said:
I am trying to get to the RHS part of the original equation. I don't know how to change the summation index. I think it involves removing half the terms.

Precisely. It's not that there are "different summation indices". It's that there are twice as many terms on the left as on the right.

There is one term on the right corresponding to every two terms on the left.

Does that give you a hint what you might do?

I don't know what you mean by using k-1, k and k + 1. I'd suggest instead starting with n = 1. That gives you two terms on the left, one on the right. Write out all the terms explicitly. See if you can make that work.

Then try n = 2. That gives you four terms on the left but you already know the sum of the first two. Write out all the terms again, without summation notation.
 
  • Like
Likes Delta2
BvU said:
There is no need to change anything. ##n## is the 'independent variable': for each value of ##n##, het LHS gives a value for the sum, and so does the RHS.

So: for ##n=3## you have an LHS value, now fill in ##n=3## on the RHS and evaluate the sum
I think I did not explain my question enough. Let's assume we don't know the RHS part and we are trying to simplify the LHS.

Here is what I am getting when I calculate values for different k and n values. How can I move ahead from here?

1569964586630.png
RPinPA said:
I don't know what you mean by using k-1, k and k + 1. I'd suggest instead starting with n = 1. That gives you two terms on the left, one on the right. Write out all the terms explicitly. See if you can make that work.

I am using k-1, k, and k+1 in the LHS part to see if there is a pattern.
 
  • Like
Likes Delta2
musicgold said:
I think I did not explain my question enough. Let's assume we don't know the RHS part and we are trying to simplify the LHS.

Here is what I am getting when I calculate values for different k and n values. How can I move ahead from here?

1569964586630-png.png


I am using k-1, k, and k+1 in the LHS part to see if there is a pattern.
Combine pairs of terms.

The terms for k being odd are: ##\dfrac 1 {1}, \dfrac 1 {3}, \dfrac 1 {5}, \dfrac 1 {7}, \dots , \dfrac 1 {2n-1}## . There are n of these. You can write a general term for these as ##\dfrac 1 {2j-1}## , where j takes on values from 1 to n. Right?

The terms for k being even are: ##-\dfrac 1 {2}, -\dfrac 1 {4}, -\dfrac 1 {6}, -\dfrac 1 {8}, \dots , - \dfrac 1 {2n}## . There are also n of these. Can you you come up with an expression for a general term for these using an index (Why not also use j ?) which takes on values from 1 to n ?

Added in Edit:
You should be able to include the two expressions in a single summation, then use algebra to combine the two into a single expression.

By the way: The this post only addresses the LHS .
 
Last edited:
  • Like
Likes Delta2
I worked with n=5 and n=6. I manually obtained the terms and summed to show the expression true for n=5. For n=6 , we will add (1/11 - 1/12) = 1/132 for the expression on the left. For the expression on the right, we will add two terms (1/11 + 1/12) but will loose one - ie 1/(5+1). Then 1/11+1/12-1/6=1/132 also.

You could do something similar with n=m and n=m+1 and hence prove by induction.
 
  • Like
Likes SammyS
musicgold said:
Here is what I am getting when I calculate values for different k and n values. How can I move ahead from here?

1569964586630-png.png
To make discussion less clumsy, let's define ##L_k ## to be ##\dfrac{(-1)^{(k-1)}}{k} ## .

There is a fundamental problem with your table. You don't sum ##L_k ## from k = 1 to k = n. You sum it from k=1 to k = 2n. The only meaningful entries in the bottom row are for even values of k.

For n = 2, the sum is 7/12.

For n = 3, the sum is 37/60.

Notice that the difference between these is 1/30.
 
  • #10
musicgold said:
I am using k-1, k, and k+1 in the LHS part to see if there is a pattern
You don't want that. For a given value of ##n## LHS sums up to something, so does RHS. ##k## has nothing to do with it.

If you now increase ##n## by 1 to ##n+1## , LHS(n+1) = LHS(n) + ##{1\over 2n+1} - {1\over 2n+2}##

and unfortunately RHS(n+1) ##\ne## RHS(n) + ##{1\over (n+1) + (n+1)} ## but, as @neilparker62 indicated
RHS(n+1) = RHS(n) + ##{1\over 2n+1 } + {1\over 2n+2 } - {1\over n+1 }##

If we want the increments to be the same, we must show that $$
{1\over 2n+1} - {1\over 2n+2} = {1\over 2n+1 } + {1\over 2n+2 } - {1\over n+1 }$$which is not so hard ... 😉
 
  • Like
Likes Delta2

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 39 ·
2
Replies
39
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K