Delta2 said:
Oops I now see a flaw, you haven't labeled the x and y-axis explicitly, but it seems to me that the force of 50kN is acting in the x-direction... Though that would imply that the x-axis is the vertical and the y-axis is the horizontal.
um the force acts in the direction of x?
So in the directions change? I don't understand, why does that happen, can you show me some other example?
The answer then would be like this? but why?
##
\begin{array}{l}----------------------\\
Σfx=0\\
-F_{BD}\sin \left(20°\right)+F_{BC}\sin \left(30°\right)=0\\
F_{BC}=F_{BD}\frac{\sin \left(20°\right)}{\sin \left(30°\right)}\\
----------------------\\
Σfy=0\\
F_{BD}\cos \left(20°\right)+F_{BC}\cos \left(30°\right)-50=0\\
F_{BD}\cos \left(20°\right)+F_{BD}\frac{\sin \left(20°\right)}{\sin \left(30°\right)}\cos \left(30°\right)-50=0\\
F_{BD}0.93+F_{BD}0.59=50\\
F_{BD}=\frac{50}{1.52}\\
\left[F_{BD}=32.89\right]\\
----------------------\\
F_{BD}\cos \left(20°\right)+F_{BC}\cos \left(30°\right)-50=0\\
32.89\cdot \cos \left(20°\right)+F_{BC}\cos \left(30°\right)-50=0\\
F_{BC}=\frac{-32.89\cdot \cos \left(20°\right)+50}{\cos \left(30°\right)}\\
\left[F_{BC}=22.04\right]\\
----------------------\end{array} ##