[]
So let us consider momentum measurement at LHC. It can be used to check whether momentum and energy are indeed what is claimed to be prepared, but it is of real interest in measuring momenta and energies of secondary decay products (where one doesn't know beforehand what is prepared). The discussion will also shed light on position measurement.
Instead of a fully realistic momentum measurement, let us consider a somewhat simplified but still reasonably realistic momentum measurement in a
Time Projection Chamber (I don't know precisely what the LHC is using, but this doesn't matter as only the basic principle is to be illustrated). The beam passes a number of wires arranged in ##L## layers of ##w## wires each and generates current signals, ideally exactly one signal per layer. From these signals, time stamps and positions are being computed by a least squares process (via the Kalman filter), assuming the track (of a charged particle in a magnetic field) is a helix (due to ionization energy loss in the chamber). From the classical tracks reconstructed by least squares, the momentum is computed in a classical way. (In the description in Section 5.2 of
https://arxiv.org/pdf/nucl-ex/0301015.pdf, only 2 Layers are present, so one uses linear tracks. The LHC uses more layers and a helical track finder, see
http://inspirehep.net/record/1643724/files/pdf.pdf)
Note that
we measure both position and momentum, which is not covered by Born's rule.
But it is described by a POVM with an operator for each of the ##w^L## possible signal patterns. The value assignment is done by a nontrivial computer program for the least squares analysis and produces a 7-dimensional phase space vector (including the energy). The operators exist by my general analysis in post #1, and can probably be approximately described in mathematical terms. But this is not essential for the principle itself, which - as you wanted - should be given in laboratory terms only.