How to think about complex integration

Click For Summary
Visualizing complex integration along a curve involves understanding how complex functions interact with the geometry of the path. When integrating, the function F, represented as a complex number, is multiplied by dz, leading to the addition of complex products. This process includes rotating and scaling complex numbers, which can be challenging to conceptualize. Resources like "Visual Complex Analysis" provide strategies and illustrations that aid in grasping these concepts. With practice and the right approach, one can effectively visualize complex line integrals geometrically.
bobby2k
Messages
126
Reaction score
2
Let's say you integrate a complex function along a curve. How do you visualize it? This is explaned very well in multivariate calculus in terms of work, or for instance the weight of the line of we integrate over the density etc..

But when we look at complex function I get this: The function F is a complex number, and then we multiply it with dz, this means that what we are doing informally is adding the product of complex numbers. But if we multiply complex number we take one of them, and rotate it with the angle of the other one, and scale its absolute value(its new absolute value is the product of both absolute values). Now I can not make sense of this. Can you? How do you informally look at a complex line integral?
 
  • Like
Likes 1 person
Physics news on Phys.org
There are two ways to do that, both explained in Visual Complex Analysis.

You can get a free sample here, which includes the vector-field approach to understanding complex integrals in chapter 11.

http://usf.usfca.edu/vca//PDF/vca-toc.pdf

In his earlier chapter on integration he does picture exactly what you are talking about. Part of this is that he drew lots of pictures, so that you can actually see it on a page, rather than just trying to imagine it. You can imagine it with practice. But another part of it is that you need sort of a strategy to be able to visualize it, which he describes. In the end, you can explain a lot of complex integrals geometrically, this way. It is still somewhat strenuous to picture it, but quite possible with practice.
 
  • Like
Likes platetheduke and FactChecker
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
908
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K