How to translate expression into momentum-space correctly

Click For Summary
SUMMARY

The discussion focuses on the correct translation of expressions into momentum-space using Fourier transformations in the context of quantum field theory. The key equations presented include the Fourier transformation of a function and the correlation function involving gauge fields, specifically the expression for the three-point correlation function of gauge fields \(A_{\mu}^{a}(p_{1})\), \(A_{\nu}^{b}(p_{2})\), and \(A_{\rho}^{c}(p_{3})\). The user identifies discrepancies between their derived expression and the established solution, noting missing momentum integrals, incorrect signs, and index mismatches. A critical typo regarding the exponent in the exponential function is also highlighted.

PREREQUISITES
  • Understanding of Fourier transformations in quantum field theory
  • Familiarity with gauge fields and correlation functions
  • Knowledge of momentum-space representation in physics
  • Proficiency in tensor notation and index manipulation
NEXT STEPS
  • Review the derivation of Fourier transformations in quantum field theory
  • Study the properties of correlation functions for gauge fields
  • Learn about the significance of momentum integrals in field theory calculations
  • Examine common pitfalls in index notation and tensor calculus
USEFUL FOR

Physicists, particularly those specializing in quantum field theory, graduate students studying particle physics, and researchers working on gauge theories and their applications.

Markus Kahn
Messages
110
Reaction score
14
Homework Statement
Let ##A_\mu^a(x)## be the gluon field and ##G_{\mu\nu}^{ab}(x)## the gluon propagator. Show that
$$\left\langle 0\left|A_{\mu}^{a}\left(x_{1}\right) A_{\nu}^{b}\left(x_{2}\right) A_{\rho}^{c}\left(x_{3}\right)\right| 0\right\rangle=-i g f^{a^{\prime} b^{\prime} c^{\prime}} \int d x \partial_{\alpha}^{x}\left[G_{\mu \beta}^{a a^{\prime}}\left(x_{1}-x\right)\right] G_{\nu \alpha}^{b b^{\prime}}\left(x_{2}-x\right) G_{\rho \beta}^{c c^{\prime}}\left(x_{3}-x\right)+\text { perm.}$$
is in momentum-space
$$
\left\langle 0\left|A_{\mu}^{a}\left(p_{1}\right) A_{\nu}^{b}\left(p_{2}\right) A_{\rho}^{c}\left(p_{3}\right)\right| 0\right\rangle=(2 \pi)^{4} \delta^{(4)}\left(p_{1}+p_{2}+p_{3}\right) g f^{a^{\prime} b^{\prime} c^{\prime}} p_{1}^{\beta} g^{\alpha \gamma} G_{\mu \alpha}^{a a^{\prime}}\left(p_{1}\right) G_{\nu \beta}^{b b^{\prime}}\left(p_{2}\right) G_{\rho \gamma}^{c c^{\prime}}\left(p_{3}\right)+\text { perm. }$$
Relevant Equations
All given above.
This seems rather straight forward, but I can't figure out the details... Generally speaking and ignoring prefactors, the Fourier transformation of a (nicely behaved) function ##f## is given by
$$f(x)= \int_{\mathbb{R}^{d+1}} d^{d+1}p\, \hat{f}(p) e^{ip\cdot x} \quad\Longleftrightarrow \quad \hat{f}(p)= \int_{\mathbb{R}^{d+1}} d^{d+1}x\, {f}(x) e^{-ip\cdot x}, $$
where ##p\cdot x := \eta_{\mu\nu}x^\mu p^\nu##. We also notice that
$$\int_{\mathbb{R}^{d+1}} d^{d+1}x\, \left(\partial_\mu{f}(x)\right) e^{-ip\cdot x} =-\int_{\mathbb{R}^{d+1}} d^{d+1}x\, {f}(x)(\partial_\mu e^{-ip\cdot x}) =ip_\mu\int_{\mathbb{R}^{d+1}} d^{d+1}x\, {f}(x)e^{-ip\cdot x} = ip_\mu \hat{f}(p).$$
I think these are all the ingredients we need to show the above statement. I would bscly. substitute the following into the given eq. above (assuming ##d=3##)
$$G_{\mu\nu}^{ab}(x_k-x)= \int_{\mathbb{R}^{4}} d^{4}p_k\, \hat{G}_{\mu\nu}^{ab}(p_k) e^{ip_k\cdot (x_k-x)},$$
which gives
$$\begin{align*}
\langle 0|A_{\mu}^{a}(p_{1}) &A_{\nu}^{b}(p_{2}) A_{\rho}^{c}(p_{3})| 0\rangle\\
&= -i g f^{a^{\prime} b^{\prime} c^{\prime}} \int d x
\left[\partial_{\alpha}^{x}\int_{\mathbb{R}^{4}} d^{4}p_1\, \hat{G}_{\mu \beta}^{a a^{\prime}}\left(p_1\right)e^{ip_1(x_1-x)}\right]
\int_{\mathbb{R}^{4}} d^{4}p_2\, \hat{G}_{\nu \alpha}^{b b^{\prime}}\left(p_{2}\right) e^{ip_2(x_2-x)}
\int_{\mathbb{R}^{4}} d^{4}p_3\, \hat{G}_{\rho \beta}^{c c^{\prime}}\left(p_{3}\right)e^{ip_3(x_3-x)}
+\text { perm.}\\
&=
-i g f^{a^{\prime} b^{\prime} c^{\prime}} \int d x\, d^{4}p_1\,d^{4}p_2\, d^{4}p_3\,
(-i(p_1)_\alpha)\hat{G}_{\mu \beta}^{a a^{\prime}}\left(p_1\right)e^{ip_1(x_1-x)}
\hat{G}_{\nu \alpha}^{b b^{\prime}}\left(p_{2}\right) e^{ip_2(x_2-x)}
\hat{G}_{\rho \beta}^{c c^{\prime}}\left(p_{3}\right)e^{ip_3(x_3-x)}
+\text { perm.}\\
&=
-p_1^\lambda\eta_{\alpha\lambda}g f^{a^{\prime} b^{\prime} c^{\prime}} \int d^{4}p_1\,d^{4}p_2\, d^{4}p_3\,
\hat{G}_{\mu \beta}^{a a^{\prime}}\left(p_1\right)
\hat{G}_{\nu \alpha}^{b b^{\prime}}\left(p_{2}\right)
\hat{G}_{\rho \beta}^{c c^{\prime}}\left(p_{3}\right)e^{ip_1x_1+p_2x_2+p_3x_3} \int dx\, e^{-i(p_1+p_2+p_3)x}
+\text { perm.}\\
&=
- (2\pi)^4 \delta^{(4)}(p_1+p_2+p_3)p_1^\lambda\eta_{\alpha\lambda}g f^{a^{\prime} b^{\prime} c^{\prime}} \int d^{4}p_1\,d^{4}p_2\, d^{4}p_3\,
\hat{G}_{\mu \beta}^{a a^{\prime}}\left(p_1\right)
\hat{G}_{\nu \alpha}^{b b^{\prime}}\left(p_{2}\right)
\hat{G}_{\rho \beta}^{c c^{\prime}}\left(p_{3}\right)e^{ip_1x_1+p_2x_2+p_3x_3}
+\text { perm.}\\
\end{align*}$$
This is as far as I can go and comparing it to the solution we see some key differences...
Solution:
$$\left\langle 0\left|A_{\mu}^{a}\left(p_{1}\right) A_{\nu}^{b}\left(p_{2}\right) A_{\rho}^{c}\left(p_{3}\right)\right| 0\right\rangle=(2 \pi)^{4} \delta^{(4)}\left(p_{1}+p_{2}+p_{3}\right) g f^{a^{\prime} b^{\prime} c^{\prime}} p_{1}^{\beta} g^{\alpha \gamma} G_{\mu \alpha}^{a a^{\prime}}\left(p_{1}\right) G_{\nu \beta}^{b b^{\prime}}\left(p_{2}\right) G_{\rho \gamma}^{c c^{\prime}}\left(p_{3}\right)+\text { perm. }$$

My version:
$$
\langle 0|A_{\mu}^{a}(p_{1}) A_{\nu}^{b}(p_{2}) A_{\rho}^{c}(p_{3})| 0\rangle=
- (2\pi)^4 \delta^{(4)}(p_1+p_2+p_3)p_1^\lambda\eta_{\alpha\lambda}g f^{a^{\prime} b^{\prime} c^{\prime}} \int d^{4}p_1\,d^{4}p_2\, d^{4}p_3\,
\hat{G}_{\mu \beta}^{a a^{\prime}}\left(p_1\right)
\hat{G}_{\nu \alpha}^{b b^{\prime}}\left(p_{2}\right)
\hat{G}_{\rho \beta}^{c c^{\prime}}\left(p_{3}\right)e^{ip_1x_1+p_2x_2+p_3x_3}
+\text { perm.}
$$

Differences:
  • the momentum integrals are missing
  • the ##e^{ip_kx_k}## factor is missing
  • the sign is wrong
  • pretty much all of the indices are different and I'm not sure if the solutions just relabeled everything or if I made a mistake...
Could somebody maybe look over this and tell me (if) what I'm doing wrong?
 
Physics news on Phys.org
One mistake (or typo, whatever you want to call it) is the exponent in the third line of yours should be ##\exp(i(p_1x_1+p_2x_2+p_3x_3))## and not ##\exp(ip_1x_1+p_2x_2+p_3x_3)##, so it seems you are missing paranatheses.
 

Similar threads

  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
1
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
1K