How to understand Domain Convention

  • Context: MHB 
  • Thread starter Thread starter Casio1
  • Start date Start date
  • Tags Tags
    Convention Domain
Click For Summary

Discussion Overview

The discussion focuses on understanding the domain convention in mathematical functions, particularly the notation and interpretation of functions and their domains. Participants express confusion regarding the definitions and representations of variables, rules, and domains in mathematical expressions.

Discussion Character

  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant expresses difficulty in understanding the notation used in functions, questioning whether their interpretations of examples like y = x^2 and f(x) = x^2 + 1 are correct.
  • Another participant suggests that the domain is not simply the variable x, but rather all values for which the operations are defined, indicating that x is a variable and not the domain itself.
  • A later reply clarifies that for the function g(x) = sqrt x, the domain is {0, infinity}, as the square root is only defined for non-negative numbers.
  • Some participants agree on the interpretation of the domain in the context of specific functions, while others challenge or refine earlier claims about the definitions and representations.

Areas of Agreement / Disagreement

Participants express differing views on the definitions of domain and variable, with some agreeing on specific interpretations while others challenge these interpretations. The discussion remains unresolved regarding the clarity of the notation and the understanding of domain conventions.

Contextual Notes

Participants reference specific examples and inequalities, but there is uncertainty regarding the general application of these concepts and whether the interpretations are universally accepted.

Casio1
Messages
86
Reaction score
0
I keep reading through the course textbook but no matter how many times I read it I just can't see the understanding of it?

There are activities asking me to solve problems, and I have a book of exercises to do, but the main book supposed to be designed to give some information to the student to gain an insight into understanding is somewhat very poorly presented(Headbang)

What seems to be very confusing to me at the moment is the interpretation of the notation used.

example.

If y = x^2, then

x is the input, which is then processed to become x^2.

So y(x) = x^2 I think?

y is the function

x is the domian

x^2 is the rule

Have I got this right so far?

if

f(x) = x^2 + 1 (0 < x < 6)

I understand inequalities so this does not require explaining, but in this example the domain is (x), the rule is x^2 + 1, and the inequalities in brackets with real numbers are used in (x) are they?

f(0) = 0^2 + 1, or

f(6) = 6^2 + 1, or is it 0 < 6 in other words the domain can be any number between 0 to 6 used in the rule?If somebody could please advise if I am understanding the above correctly or not would be much appreciated as I can't get this from my coursebook because there is no worked examples or explanations.

Thanks
(Sadface)
 
Mathematics news on Phys.org
Casio said:
I keep reading through the course textbook but no matter how many times I read it I just can't see the understanding of it?

There are activities asking me to solve problems, and I have a book of exercises to do, but the main book supposed to be designed to give some information to the student to gain an insight into understanding is somewhat very poorly presented(Headbang)

What seems to be very confusing to me at the moment is the interpretation of the notation used.

example.

If y = x^2, then

x is the input, which is then processed to become x^2.

So y(x) = x^2 I think?

y is the function

x is the domian

x^2 is the rule

Have I got this right so far?

if

f(x) = x^2 + 1 (0 < x < 6)

I understand inequalities so this does not require explaining, but in this example the domain is (x), the rule is x^2 + 1, and the inequalities in brackets with real numbers are used in (x) are they?

f(0) = 0^2 + 1, or

f(6) = 6^2 + 1, or is it 0 < 6 in other words the domain can be any number between 0 to 6 used in the rule?
I think if you would post a problem using its exact wording with the exact set of instructions, then we can help you work through it.
 
Thank you but I do need to clarify some basic understanding of the notation of the subject first, although I appreciate I created a long thread previously I will try to shorten it.
 
Now that I have had some basics explained to me on another thread entitled "Understanding Functions" I can now understand what the title of this thread now means.

By example;

g(x) = sqrt x

The function of g has the domain {0, infinity) since sqrt x is defined only for x > 0

The x which is a variable would only represent a positive number since we cannot take the square root of a negative number, therefore x must be 0 or more than and cannot be negative.

Now I understand where {0, infinity} comes into it because x cannot be less than 0, but could be any number above 0.

Do you all agree.
 
Casio said:
I keep reading through the course textbook but no matter how many times I read it I just can't see the understanding of it?

There are activities asking me to solve problems, and I have a book of exercises to do, but the main book supposed to be designed to give some information to the student to gain an insight into understanding is somewhat very poorly presented(Headbang)

What seems to be very confusing to me at the moment is the interpretation of the notation used.

example.

If y = x^2, then

x is the input, which is then processed to become x^2.

So y(x) = x^2 I think?

y is the function
Yes, that is correct.

x is the domian
No, x is the "variable". The general rule is that unless something specific is said (like "0\le x\le 6" later) the domain is all values of x for which the operations involved are defined. Here, the only operations are "square" and "add 1" which can be done for all numbers.

x^2 is the rule
Yes.

Have I got this right so far?

if

f(x) = x^2 + 1 (0 < x < 6)

I understand inequalities so this does not require explaining, but in this example the domain is (x), the rule is x^2 + 1, and the inequalities in brackets with real numbers are used in (x) are they?

f(0) = 0^2 + 1, or

f(6) = 6^2 + 1, or is it 0 < 6 in other words the domain can be any number between 0 to 6 used in the rule?If somebody could please advise if I am understanding the above correctly or not would be much appreciated as I can't get this from my coursebook because there is no worked examples or explanations.

Thanks
(Sadface)
I addressed this in your other post.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
16
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
11
Views
12K
  • · Replies 5 ·
Replies
5
Views
2K