- #36

ultrauser

- 23

- 0

u-velocities before interaction

v-velocities after interaction

So I know

m1=100kg u1=0m/s

m2=10kg u2=10m/s

\begin{equation}

v_1 = \frac{u_1(m_1-m_2) + 2m_2u_2}{m_1+m_2};\\

v_2 = \frac{u_2(m_2-m_1) + 2m_1u_1}{m_1+m_2}; \end{equation}

\begin{equation}

v_1 = \frac{0(100-10) + 2*10*10}{100+10};\\

v_2 = \frac{10(10-100) + 2*100*0}{100+10}; \end{equation}

\begin{equation}

v_1= \frac{200}{110}=1.(81)\frac{m}{s}

\end{equation}

\begin{equation}

v_2= \frac{-900}{110}=-8.(18)\frac{m}{s}

\end{equation}

So does it mean first planetoid will now travel at 1.(81)m/s in left direction and second at -8.(18)m/s in right direction (I guess "-" mean it will reflect and travel into direction opposite to the direction before impact) ?

These are very different results from attempt I made before and I used the same data ( I can't get it why previous method gives such different results)