How to write the algorithm? I have figured out a method to find the inverse.

  • #1
Ask4material
18
0
How to write the algorithm? I figured out a method to find the inverse.

The assignment is making use of the property of triangular matrices to find the inverse of a matrix [itex]\displaystyle A[/itex].

The inverse of a triangular matrix(Upper/ Lower) is also triangular(Upper/ Lower) and is easy to find.

[itex]\displaystyle \begin{bmatrix} a & b & c\\ 0 & d & e\\ 0 & 0& f \end{bmatrix} \begin{bmatrix}\frac{1}{a} & x & z\\ 0 & \frac{1}{d} & y \\ 0 & 0 &\frac{1}{f} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}[/itex]

By equating the Upper 0s, [itex]\displaystyle x, y, z[/itex] are readily to be found.

[itex]\displaystyle x = -a^{-1} b d^{-1}[/itex], [itex]\displaystyle y = -d^{-1} e f^{-1}[/itex], [itex]\displaystyle z = a^{-1} b d^{-1} c f^{-1} - a^{-1} c f^{-1}[/itex]

In higher order matrices:

[itex]\displaystyle a d x= - \begin{vmatrix} b \end{vmatrix}[/itex]

[itex]\displaystyle d f y = - \begin{vmatrix} e \end{vmatrix}[/itex]

[itex]\displaystyle a d f z= + \begin{vmatrix} b & c \\ d & e \end{vmatrix}[/itex]

[itex]\displaystyle \pm [/itex] signs follow the plan:

[itex]\displaystyle \begin{bmatrix} + & - & + \\ - & + & -\\ + & -& + \end{bmatrix} \sim \begin{bmatrix} + & x & z \\ - & + & y\\ + & - & + \end{bmatrix}[/itex]

If [itex]\displaystyle A[/itex] is invertible, find [itex]\displaystyle A^{-1}[/itex] by changing [itex]\displaystyle A[/itex] triangular...

[itex]\displaystyle AX=I[/itex]

[itex]\displaystyle E_3E_2E_1AX=E_3E_2E_1I[/itex]

[itex]\displaystyle E_jAX=E_jI[/itex]

Take Row operation and Column operation on [itex]\displaystyle E_jA[/itex] to become a triangular matrix

[itex]\displaystyle R_jE_jAC_j = U[/itex] is triangular.

[itex]\displaystyle (R_jE_jAC_j)^{-1} = U^{-1}[/itex] can be found by the method above.


[itex]\displaystyle (R_jE_jAC_j)^{-1}=C_j^{-1}A^{-1}E_j^{-1}R_j^{-1} = U^{-1}[/itex]

[itex]\displaystyle A^{-1}=C_j(C_j^{-1}A^{-1}E_j^{-1}R_j^{-1})R_jE_j = C_j(U^{-1})R_jE_j[/itex]

[itex]\displaystyle E_j = E_jAX = E_jI[/itex] is computed in the beginning.
 
Last edited:

Answers and Replies

  • #2
fresh_42
Mentor
Insights Author
2022 Award
17,653
18,358
Triangular matrices are comparably easy to invert. One only needs the explicit formula for matrix inversion by determinants of submatrices, the adjugate matrix and a backwards substitution.
 

Suggested for: How to write the algorithm? I have figured out a method to find the inverse.

Replies
34
Views
1K
Replies
1
Views
610
Replies
4
Views
275
  • Last Post
Replies
12
Views
150
  • Last Post
Replies
24
Views
865
  • Last Post
Replies
5
Views
323
Replies
14
Views
711
  • Last Post
Replies
2
Views
615
Replies
8
Views
637
  • Last Post
Replies
5
Views
959
Top