(adsbygoogle = window.adsbygoogle || []).push({}); How to write the algorithm? I figured out a method to find the inverse.

The assignment is making use of the property of triangular matrices to find the inverse of a matrix [itex]\displaystyle A[/itex].

The inverse of a triangular matrix(Upper/ Lower) is also triangular(Upper/ Lower) and is easy to find.

[itex]\displaystyle \begin{bmatrix} a & b & c\\ 0 & d & e\\ 0 & 0& f \end{bmatrix} \begin{bmatrix}\frac{1}{a} & x & z\\ 0 & \frac{1}{d} & y \\ 0 & 0 &\frac{1}{f} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}[/itex]

By equating the Upper 0s, [itex]\displaystyle x, y, z[/itex] are readily to be found.

[itex]\displaystyle x = -a^{-1} b d^{-1}[/itex], [itex]\displaystyle y = -d^{-1} e f^{-1}[/itex], [itex]\displaystyle z = a^{-1} b d^{-1} c f^{-1} - a^{-1} c f^{-1}[/itex]

In higher order matrices:

[itex]\displaystyle a d x= - \begin{vmatrix} b \end{vmatrix}[/itex]

[itex]\displaystyle d f y = - \begin{vmatrix} e \end{vmatrix}[/itex]

[itex]\displaystyle a d f z= + \begin{vmatrix} b & c \\ d & e \end{vmatrix}[/itex]

[itex]\displaystyle \pm [/itex] signs follow the plan:

[itex]\displaystyle \begin{bmatrix} + & - & + \\ - & + & -\\ + & -& + \end{bmatrix} \sim \begin{bmatrix} + & x & z \\ - & + & y\\ + & - & + \end{bmatrix}[/itex]

If [itex]\displaystyle A[/itex] is invertible, find [itex]\displaystyle A^{-1}[/itex] by changing [itex]\displaystyle A[/itex] triangular...

[itex]\displaystyle AX=I[/itex]

[itex]\displaystyle E_3E_2E_1AX=E_3E_2E_1I[/itex]

[itex]\displaystyle E_jAX=E_jI[/itex]

Take Row operation and Column operation on [itex]\displaystyle E_jA[/itex] to become a triangular matrix

[itex]\displaystyle R_jE_jAC_j = U[/itex] is triangular.

[itex]\displaystyle (R_jE_jAC_j)^{-1} = U^{-1}[/itex] can be found by the method above.

[itex]\displaystyle (R_jE_jAC_j)^{-1}=C_j^{-1}A^{-1}E_j^{-1}R_j^{-1} = U^{-1}[/itex]

[itex]\displaystyle A^{-1}=C_j(C_j^{-1}A^{-1}E_j^{-1}R_j^{-1})R_jE_j = C_j(U^{-1})R_jE_j[/itex]

[itex]\displaystyle E_j = E_jAX = E_jI[/itex] is computed in the beginning.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# How to write the algorithm? I have figured out a method to find the inverse.

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**