MHB I<0? Evaluate New Year Challenge Integral

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Year
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $$I=\int_{2013}^{2014} \frac{\sin x}{x}\,dx$$. Determine with reason if $I<0,\,I=0$ or $I>0$?

This challenge is one of my top favorite problems that can be cracked using purely elementary method! (Sun):)
 
Mathematics news on Phys.org
anemone said:
Let $$I=\int_{2013}^{2014} \frac{\sin x}{x}\,dx$$. Determine with reason if $I<0,\,I=0$ or $I>0$?

This challenge is one of my top favorite problems that can be cracked using purely elementary method! (Sun):)

converting to degree we have lower limit around $136.90^\circ$ and upper limit around $193.70^\circ$
now from $136.90^\circ$ to $180^\circ$ degrees $\sin$ is $\ge 0$ and from $180^\circ$ to 1$93.70^\circ$ . it is $\le 0$. They come in the same cycle as difference is 1 radian
integral from $(180-13.70)^\circ$ i.e $166.30^\circ$ to $193.70^\circ$ shall be zero provided denominator is constant. as denominator is decreasing the integral from $166.30^\circ$ to $193.70^\circ$ is positive and adding another positive quantity that is integral from $136.90^\circ$ to $166.30^\circ$ which is positive so sum $I \gt 0$
 
Thanks kaliprasad for participating.
Your solution is quite ingenious, and please note that the value $136.90^\circ$ should be $136.40^\circ$.

Solution of other:
Split the definite integral into two part, with $a$ being the zero at about $2013.75$, note that we have:

$$\int_{2013}^{a} \frac{\sin x}{x}\,dx>\int_{2013}^{a} \frac{\sin x}{2014}\,dx$$

and

$$\int_{a}^{2014} \frac{\sin x}{x}\,dx>\int_{a}^{2014} \frac{\sin x}{2013}\,dx$$

So adding them up yields

$$\begin{align*}I=\int_{2013}^{a} \frac{\sin x}{x}\,dx+\int_{a}^{2014} \frac{\sin x}{x}\,dx&>\int_{2013}^{a} \frac{\sin x}{2014}\,dx+\int_{a}^{2014} \frac{\sin x}{2013}\,dx\\&>\frac{\cos 2013}{2014}-\frac{\cos 2014}{2013}+\frac{\cos a}{2013}-\frac{\cos a}{2014}\\&>0\end{align*}$$
 
anemone said:
Thanks kaliprasad for participating.
Your solution is quite ingenious, and please note that the value $136.90^\circ$ should be $136.40^\circ$.

oops my mistake. false start in 2016.
 
kaliprasad said:
oops my mistake. false start in 2016.

Please don't worry about it...and it was after all an honest mistake, I understand it completely.:)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top