I cannot make the Gram-Schmidt procedure work

Click For Summary
The discussion centers on difficulties encountered while applying the Gram-Schmidt procedure to orthonormalize a basis of complex vectors from Griffiths & Schroeter's Quantum Mechanics. The original poster successfully normalized the first two vectors but struggled with the third, leading to incorrect results in verifying orthogonality. Key issues identified include potential sign errors in calculations and the need for proper complex conjugation in inner products. Participants emphasized the importance of clear notation and methodical checking of each step to avoid mistakes. Overall, the conversation highlights common pitfalls in complex vector arithmetic and the significance of precise mathematical representation.
George Keeling
Gold Member
Messages
181
Reaction score
41
Homework Statement
I have been asked to use the Gram-Schmidt procedure and it does not produce orthonormal vectors :(
Relevant Equations
Gram-Schmidt procedure, inner product of complex vectors
This is problem A.4 from Quantum Mechanics – by Griffiths & Schroeter.

I cannot make the Gram-Schmidt procedure work. I don't know whether I am just inept with complex vectors or I have made some wrong assumption.

The Gram-Schmidt procedure (modified, I think)
Suppose you start with a basis ##\left(|\left.e_1\right>,|\left.e_2\right>,\ldots,|\left.e_n\right>\right)## that is not orthonormal. The Gram-Schmidt procedure is a systematic ritual for generating from it an orthonormal basis ##\left(|\left.{e^\prime}_1\right>,|\left.\left.{e^\prime}_2\right>\right>,\ldots,|\left.{e^\prime}_n\right>\right)##. It goes like this:
(i) Normalize the first basis (divide it by its norm):
\begin{align}|\left.{e^\prime}_1\right>=\frac{|\left.e_1\right>}{\left|\left.e_1\right.\right|}&\phantom {10000}(1)\nonumber\end{align} (ii) Find the projection of the second vector along the first and subtract it off:
\begin{align}|\left.e_2\right>-\left<{e^\prime}_1|e_2\right>|\left.{e^\prime}_1\right>&\phantom {10000}(2)\nonumber\end{align}This vector is orthogonal to ##|\left.{e^\prime}_1\right>##; normalise it to get ##|\left.{e^\prime}_2\right>##.
(iii) Subtract from ##|\left.e_3\right>## its projections along ##|\left.{e^\prime}_1\right>## and ##|\left.{e^\prime}_2\right>## and get
\begin{align}|\left.e_3\right>-\left<{e^\prime}_1|e_3\right>|\left.{e^\prime}_1\right>-\left<{e^\prime}_2|e_3\right>|\left.{e^\prime}_2\right>&\phantom {10000}(3)\nonumber\end{align}This vector is orthogonal to ##|\left.{e^\prime}_1\right>## and ##|\left.{e^\prime}_2\right>##; normalise it to get ##|\left.{e^\prime}_3\right>##. And so on.

The authors also uses the * sign. For example at A.24 they almost say "with an orthonormal basis the inner product of two vectors can be written very neatly in terms of their components
\begin{align}\left<\beta|\alpha\right>={\beta_1}^\ast\alpha_1+{\beta_2}^\ast\alpha_2+\ldots+{\beta_n}^\ast\alpha_n&\phantom {10000}(4)\nonumber\end{align}". I assumed that ##{\beta_1}^\ast## is the complex conjugate of ##\beta_1##. (Wikipedia agrees that physicists do this). Formula (4) will be very useful for executing the GS procedure.

The Question and my attempted solution
Use the Gram-Schmidt procedure to orthonormalize the 3-space basis
\begin{align}|\left.e_1\right>&=\left(1+i\right)\hat{i}+\hat{j}+i\hat{k}&\phantom {10000}(5)\nonumber\\|\left.e_2\right>&=i\hat{i}+3\hat{j}+\hat{k}&\phantom {10000}(6)\nonumber\\|\left.e_3\right>&=28\hat{j}&\phantom {10000}(7)\nonumber\end{align}The author does not say so but I assumed that ##\hat{i},\hat{j},\hat{k}## are an orthonormal basis. Although this begs the question: Why do we need another orthonormal basis?

It's obviously easiest to start with ##|\left.e_3\right>## and then it turns out that ##|\left.e_2\right>## is next easiest. Here they are:
\begin{align}|\left.{e^\prime}_3\right>=\hat{j}&\phantom {10000}(8)\nonumber\\|\left.{e^\prime}_2\right>=\frac{i\hat{i}+\hat{k}}{\sqrt2}&\phantom {10000}(9)\nonumber\end{align}##|\left.{e^\prime}_2\right>## has norm 1 and is orthogonal to ##|\left.{e^\prime}_3\right>##. Those were quite easy but this is where it all goes wrong: The third step is to find a vector orthogonal to ##|\left.{e^\prime}_3\right>,|\left.{e^\prime}_2\right>## which is
\begin{align}|\left.e_1\right>-\left<{e^\prime}_3|e_1\right>|\left.{e^\prime}_3\right>-\left<{e^\prime}_2|e_1\right>|\left.{e^\prime}_2\right>&\phantom {10000}(10)\nonumber\\=\left(1+i\right)\hat{i}+\hat{j}+i\hat{k}-\left(1\right)\hat{j}-\left(\left(\frac{i\hat{i}+\hat{k}}{\sqrt2}\right)\bullet\left(\left(1+i\right)\hat{i}+\hat{j}+i\hat{k}\right)\right)\frac{i\hat{i}+\hat{k}}{\sqrt2}&\phantom {10000}(11)\nonumber\\=\left(1+i\right)\hat{i}+i\hat{k}-\frac{1}{2}\left(1\right)\left(i\hat{i}+\hat{k}\right)=\left(1-\frac{i}{2}\right)\hat{i}+\left(-\frac{1}{2}+i\right)\hat{k}&\phantom {10000}(12)\nonumber\end{align}I have used ##\bullet## to indicate inner product when the first vector's components still need to be 'complex conjugated'. The vector has no ##\hat{j}## component so it is orthogonal to ##|\left.{e^\prime}_3\right>##. Now normalise that and we have
\begin{align}|\left.{e^\prime}_1\right>=\frac{\frac{1}{2}\left(\left(2-i\right)\hat{i}+\left(-1+2i\right)\hat{k}\right)}{\sqrt{\left(\frac{1}{2}\left(\left(2-i\right)\hat{i}+\left(-1+2i\right)\hat{k}\right)\right)\bullet\left(\frac{1}{2}\left(\left(2-i\right)\hat{i}+\left(-1+2i\right)\hat{k}\right)\right)}}&\phantom {10000}(13)\nonumber\\|\left.{e^\prime}_1\right>=\frac{\left(2-i\right)\hat{i}+\left(-1+2i\right)\hat{k}}{\sqrt{10}}&\phantom {10000}(14)\nonumber\end{align}Now we just need to check that ##|\left.{e^\prime}_1\right>,|\left.{e^\prime}_2\right>## are orthogonal:
\begin{align}\left<{e^\prime}_1|\ {e\prime}_2\right>=\frac{1}{\sqrt{20}}\left(\left(2-i\right)\hat{i}+\left(-1+2i\right)\hat{k}\right)\bullet\left(i\hat{i}+\hat{k}\right)=\frac{-2}{\sqrt{20}}&\phantom {10000}(15)\nonumber\end{align}##|\left.{e^\prime}_1\right>,|\left.{e^\prime}_2\right>## are not orthogonal! Where I have gone wrong?
 
  • Like
Likes FactChecker
Physics news on Phys.org
George Keeling said:
Homework Statement: I have been asked to use the Gram-Schmidt procedure and it does not produce orthonormal vectors :(
Relevant Equations: Gram-Schmidt procedure, inner product of complex vectors

". I assumed that β1∗ is the complex conjugate of β1. (Wikipedia agrees that physicists do this). Formula (4) will be very useful for executing the GS procedure.
This is correct. So then $$\langle e'_1|= ???? $$
 
The same as ##|\left.{e^\prime}_1\right>## but using the complex conjugate of each component?

Because ##\langle e'_1|e'_1\rangle|## is the norm (squared).
 
Did you do that? I don't think so.
 
Did I do what? Sorry I dont understand
 
  • Skeptical
Likes George Keeling
hutchphd said:
Eq 13 is correct but equation 15 is not. bras and kets
I think (13) is wrong as well because of a sign error. The ##\hat i## component should ##(2+i)/\sqrt{10}##.
 
  • Love
Likes George Keeling
Very possible but the big error is how to write the ##\langle bra|ket \rangle##
 
Thanks everybody. I will return to the fray tomorrow.
 
  • #10
I want to comment on how well this question was presented. The equation numbers and good formatting make it a real pleasure to discuss. I have not looked at the details, but the problem with the ## \hat {i}## component of equation (12) is clear.
 
  • Like
Likes PhDeezNutz and George Keeling
  • #11
hutchphd said:
Very possible but the big error is how to write the ##\langle bra|ket \rangle##
I think you missed that the OP wrote:
George Keeling said:
I have used ∙ to indicate inner product when the first vector's components still need to be 'complex conjugated'.
 
  • #12
vela said:
I think you missed that the OP wrote:
Yes I did miss that (very odd) notation. I believe the OP just screws up the final algebra step in line 15. I get zero.....but I do algebra badly. Whew!
 
  • Skeptical
Likes George Keeling
  • #13
I found checking the OP’s working awkward so would like to add this…

Using suitable notation can help minimise errors, improve readability and reduce eye-strain! It’s tempting here to:

- express the vectors in, say, row/column notation (common practice) to eliminate the need for ##\hat i, \hat j## and ##\hat k##; this (IMO) makes things visually cleaner (as well as reducing the risk of getting ##\hat i## and ##i## muddled);

- use, say, ##b_1, b_2## and ##b_3## rather than ##e'_1, e'_2## and ##e'_3## as the new basis vectors to avoid clutter/confusion between "##e##"s and "##e’##"s.

The final answer can be translated back to the original format, if required.

I know many will already be familiar with this, but for the OP's benefit...

We can write:
##|e_1> = [1+i ~~1~~i]^T,~~|e_2> =[i~~3~~1]^T,~~|## and ##|e_3>=[0~~28~~0]^T##

From the OP's working we have:
##|b_3> = [0~~1~~0]^T## and ##|b_2> = \frac 1{\sqrt 2}[i~~0~~1]^T##.

We express ##<b_3|## and ##<b_2|## as row vectors and incorporate complex conjugation:
##<b_3| = [0~~1~~0]## and ##<b_2| = \frac 1{\sqrt 2}[-i~~0~~1]##

Our last basis vector (not normalised) is then:

##|b_{1,unorm }> = |e_1> - <b_3|e_1>|b_3> - <b_2|e_1>|b_2>##

##= [1+i ~~1~~i]^T - ([0~~1~~0][1+i ~~1~~i]^T)[0~~1~~0]^T - (\frac 1{\sqrt 2}[-i~~0~~1][1+i~~1~~i]^T)\frac 1{\sqrt 2}[i~~0~~1]^T##

##= [1+i~~1~~i]^T - (0.(1+i)+1.1+0.i)[0~~1~~0]^T - \frac 1{\sqrt 2}((-i)(1+i) + 0.1+ 1.i)\frac 1{\sqrt 2}[i~~0~~1]^T##

etc.

Even if there are mistakes, the above format should make locating them a bit easier.
 
  • Like
Likes PhDeezNutz and George Keeling
  • #14
I would also point out that one can write down <b3| by inspection after you see the form of the the other two b vectors. The Gram -Schmidt is really cumbersome. So $$\langle b_1 |=\frac 1 {\sqrt 2} [~ i~0~1~ ]$$
George Keeling said:
Homework Statement: I have been asked to use the Gram-Schmidt procedure and it does not produce orthonormal vectors :(
Relevant Equations: Gram-Schmidt procedure, inner product of complex vectors

Why do we need another orthonormal basis?
Bases are chosen typically using symmetries of the problem to male the arithmetic less opaque.
 
  • Like
Likes George Keeling
  • #15
vela said:
I think (13) is wrong as well because of a sign error. The ##\hat i## component should ##(2+i)/\sqrt{10}##.
That has the great benefit of making ##|\left.{e^\prime}_1\right>,|\left.{e^\prime}_2\right>## orthogonal. Going back to (12) and extracting the ##\hat{i}##
component. I wrote
$$\left(1+i\right)\hat{i}-\frac{1}{2}\left(1\right)\left(i\hat{i}\right)=\left(1-\frac{i}{2}\right)\hat{i}$$
and that is wrong.

It should have been
$$\left(1+i\right)\hat{i}-\frac{1}{2}\left(1\right)\left(i\hat{i}\right)=\left(1+i\right)\hat{i}-\frac{1}{2}i\hat{i}=\left(1+\frac{i}{2}\right)\hat{i}$$So it was just my ineptitude at complex vector arithmetic:frown:.
@vela Did you spot that because you knew the vector that would be orthogonal or because you saw my arithmetic error? Or something else?

Thanks again everybody!
 
  • #16
George Keeling said:
Did you spot that because you knew the vector that would be orthogonal or because you saw my arithmetic error?
I had Mathematica do the calculations you did and compared its results to yours. I didn't do the calculations by hand because I knew I'd probably make a mistake somewhere along the way too. :wink:

Sign errors are really easy to make, and it only gets worse when you throw ##i##'s into the mix. It's one of the first things I look for if I'm expecting an answer of 0 but don't get it.
 
  • Like
Likes George Keeling
  • #17
I don't know if it would be over the top to suggest that a specific inner-product be specified. In this case, it's the "standard" one in ## \mathbb R^n ## (n=2) here.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
Replies
12
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
2
Views
943
  • · Replies 3 ·
Replies
3
Views
1K