Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I know the main points of string theory, but can someone tell me where

  1. Jan 26, 2010 #1
    I know the main points of string theory, but can someone tell me where the evidence is that it could be true?
     
  2. jcsd
  3. Jan 26, 2010 #2

    tom.stoer

    User Avatar
    Science Advisor

    Re: Evidence

    Warning: I know that other people here will disagree, but as far as I can see there is no evidence.
     
  4. Jan 26, 2010 #3
    Re: Evidence

    There is no real evidence for this.

    Torquil
     
  5. Jan 26, 2010 #4

    arivero

    User Avatar
    Gold Member

    Re: Evidence

    Mathematical coincidences, mostly between branches of string theory itself, but more important also with other independent approaches, such as supergravity and non commutative geometry.
     
  6. Jan 26, 2010 #5

    arivero

    User Avatar
    Gold Member

    Re: Evidence

    I think that this article,
    http://dx.doi.org/10.1016/0370-2693(71)90028-1 [Broken]
    which elaborates a remark at the end of
    http://link.aps.org/doi/10.1103/PhysRevD.4.1109
    was more near of the truth that the current interpretation of string theory.

    Note that the author is one of the fathers of string theory, but his posture evolved in 1974 http://dx.doi.org/10.1016/0550-3213(74)90010-8 [Broken] to incorporate the Planck scale.

    For this interpretation article, we actually have evidence:

    - the pion has the same mass that a charged fermion.
    - the total number of "terminated gluons", ie mesons and diquarks, of a given charge is exactly two times the number of fermions in the standard model having this same charge.
     
    Last edited by a moderator: May 4, 2017
  7. Jan 27, 2010 #6

    tom.stoer

    User Avatar
    Science Advisor

    Re: Evidence

    @HarryDaniels: talking about "evidence" - what exactly do you have in mind? do you have some examples?
     
  8. Jan 27, 2010 #7
    Re: Evidence

    None.
    What I mean is: Is there any evidence apart from the fact that it fits in combining the two main theories. Is there any observations that agrees with the theory?
     
  9. Jan 27, 2010 #8

    marcus

    User Avatar
    Science Advisor
    Gold Member
    Dearly Missed

    Re: Evidence

    But the evidence suggesting that superstring/M-theory is NOT how nature works is overwhelming*. For the moment it seems like a waste of time to discuss it. Some of the top researchers appear to be shifting support and interest, all or part, out of string**. There are other interesting research programs*** which have taken shape in the past 10 years.

    *after many years no evidence of extra dim, or low-energy supersymmetry, the failure to find a unique version, explosion into over 10500 different versions of physics, politely called the "string landscape". Anti-deSitter (AdS) string preference, against the current consensus of cosmologists, incompatibility of extra dimensions with both dark energy and cosmic inflation according to theorems proved by Princeton's Paul Steinhardt. M-theory still a dream---not yet gelled into definite theory with explicit equations and principles.

    **top people such as: Petr Horava, Erik Verlinde, Nima Arkani-Hamed, Hermann Nicolai, Steven Weinberg, Edward Witten.

    ***other interesting programs, with no spatial extra dimensions, such as: Horava's 4D gravity, Verlinde's 4D gravity, Weinberg AsymptoticSafe 4D gravity, Witten's 3D gravity toy model, Nicolai's program for minimalist non-string unification out to Planck scale, Shaposhnikov's minimalist unification, Loop and spin foam gravity, Path integral 4D approaches such as the Utrecht group's, Noncommutative geometry and noncommutative field theory.
     
    Last edited: Jan 27, 2010
  10. Jan 27, 2010 #9

    atyy

    User Avatar
    Science Advisor

    Re: Evidence

    String theory is the only known consistent quantum theory of gravity that yields classical gravity described by the Einstein field equations. Whether it describes our universe is unknown. Suggestions for its experimental implications are in eg. http://arxiv.org/abs/1001.0577 , http://arxiv.org/abs/1001.4084 .
     
    Last edited by a moderator: Apr 24, 2017
  11. Jan 27, 2010 #10

    marcus

    User Avatar
    Science Advisor
    Gold Member
    Dearly Missed

    Re: Evidence

    A major difficulty is, as Gertrude Stein said about the city of Oakland, "there is no there there."

    There are many versions of the various string theories. It seems to be difficult to construct one that entirely agrees with all past experimental observation, and such constructions have become increasingly "Baroque" over the years. (Baroque was Hermann Nicolai's word for it. He is a prominent and influential string theorist who is among those who have shifted interest over into simpler "minimalist" unification schemes, which actually make predictions and are testable at accessible energies. As examples of increasingly Baroque elaboration, Nicolai could well have been thinking of "F-theory" papers such as those Atyy just cited in the previous post.)

    Moreover, mere agreement with past observation (even if they could achieve it) would not yet be a sufficient test. A theory has to be falsifiable, which means not only agreeing with past observation but also making definite predictions about future outcomes. To gain credibility it has to "bet its life" on specific outcomes of specific future experiments. Some of the new minimalist unification approaches do this.
    Nicolai's, for instance, is falsifiable at LHC energies, if the LHC gets up to design specs.

    So at this point the whole string enterprise has become of questionable merit. There is a framework which produces a huge variety of different versions. There is no unique theory and there are no unique predictions about the outcome of future experiment. Some of the most eminent people are finding other things to do, devising other approaches to gravity and unification to be interested in---typically 4D approaches. And the trend is born out by sociological measures such as the declining rate of research citations to recent string papers (a measure of value as seen by the researchers themselves.)

    So you asked about evidence. I would say that there are many sorts of evidence which suggest that the overall framework or approach (not yet a definite theory) is seen as less promising now than it was, say 10 years ago. There are more exciting things to learn about now, and more exciting developments to watch.
     
    Last edited: Jan 27, 2010
  12. Jan 27, 2010 #11

    atyy

    User Avatar
    Science Advisor

    Re: Evidence

    Nicolai and Meissner's work is motivated by string theory. Like F-theory, it uses string theory to constrain suggestions of phenomena that may be observed at the LHC. "However, apart from the known difficulties with (Weyl)2 theories of gravity, the known ansaetze at unification in general do not give rise to effectively Weyl invariant low energy theories2, despite the ubiquity of dilaton-like fields in supergravity and superstring theory. For this reason we here suggest a different route by exploring whether and under what circumstances it may be possible to get a classically conformal theory out of non-conformal Einstein gravity or some of its supersymmetric extensions." http://arxiv.org/abs/0907.3298"
     
  13. Jan 27, 2010 #12
    Re: Evidence

    I do not think this is fair. As much as I have interest in non-string alternatives, I remain convinced that string theory is very fruitful. I wanted to post a historical reference in the lines of what arivero provided. Here is an up-to-date review of string models for gauge theories :

    "From Gauge-String Duality to Strong Interactions: A Pedestrian’s Guide"
    Annu. Rev. Nucl. Part. Sci. 2009. 59:145–68

    It is a fact we should not overlook : there is no comparison out there on the market when it comes to calculating gauge theories in their strong sector, non-perturbative effective methods. I want to emphasize "effective" for two reasons at this level. First reason is that I am interested in results, concrete predictions, and you will not find anything comparing to the gauge-string duality in efficiency when you look into non-perturbative QCD. Secondly, and from this perspective, whether string theory is really fundamental needs not be decided yet. The advances in pure mathematics string theory gave us justify that we still pursue its development.

    The last year in particular has seen a lot of publications in effective models, calculations which do work, from string theory. Apart from non-perturbative QCD, I will also mention superconductivity : it is not inconceivable that string theory will provide us with important insights on High-T superconductors.

    There are very interesting, important and fascinating developments outside string theory, and this is great. String theory also made progress during the last 10 years, and it offers many more promises, one can not seriously deny that. Whether other approaches have made more progress, it is possible, but whether that affects the "merit" of string theory, I doubt.
     
  14. Jan 27, 2010 #13

    marcus

    User Avatar
    Science Advisor
    Gold Member
    Dearly Missed

    Re: Evidence

    It's certainly true that string mathematics is proving useful as a computational tool in fields like superconductivity and nuclear physics. This is where the math is not being used as a microscopic theory of nature but as method to analyze processes at much larger scale. Hermann Nicolai has drawn attention to this in several articles.

    Steven Weinberg has spoken recently of string theory as "disappointing" despite his high expectations for it some years back. This "disappointment" seems to be primarily in the area of fundamental particle physics, unification, the "ToE" quest in other words. Here's the video of his October 2009 talk:
    http://www.ustream.tv/recorded/2384517

    In this perspective talk on the status and expectations of high energy physics, to the 2009 national science-writer's convention, he did not even mention string theory. Not a word about it until someone asked him a question at the end. Here's a transcript of his reply:
    http://www.math.columbia.edu/~woit/wordpress/?p=2400
    A sample of Weinberg's response to the questioner:

    ==quote==
    It’s developed mathematically, but not to the point where there is any one theory, or to the point that even if we had one theory we would know how to do calculations to predict things like the mass of the electron, or the masses of the quarks. So, I would say, although there has been theoretical progress it’s been, I find it disappointing...

    One of the troubles with superstring theory is that although in a sense the theorists think there is only one theory, there are an infinite number of approximate solutions of it and we don’t know which one corresponds to our world...

    ==endquote==

    What we're talking about is a not-so-subtle shift of emphasis and perspective. Of course we can't tell if interest and activity in string will continue to decline! Something could happen t bring it back into the limelight.

    However this process goes, it is interesting to watch and a lot can be told by studying the lineup of talks and events at the annual Strings conference. Strings 2010 is coming up in hardly more than six weeks. It will be at the Texas A and M Campus, at College Station in Texas. The speaker's list has been posted----a great lineup of about 40 speakers. But the titles of the talks have not been posted. It looks to me like every possible effort is being made to re-invigorate the field. It's going to be really interesting to see the titles of the 40-some talks! Here is the website.
    http://mitchell.physics.tamu.edu/Conference/string2010/ [Broken]
    Steven Weinberg will be one of the 40 invited speakers.
     
    Last edited by a moderator: May 4, 2017
  15. Jan 28, 2010 #14

    tom.stoer

    User Avatar
    Science Advisor

    Re: Evidence

    Is there a proof regarding consistency?
     
  16. Jan 28, 2010 #15

    arivero

    User Avatar
    Gold Member

    Re: Evidence

    Well, it depends. According to v. Neumann, consistency of a set of axioms is equivalent to the existence of a model where these axioms evaluate to true. Except by exhibition of a model I am not sure if there is other way to prove consistency.

    What is usually understood here is absence of anomalies, divergences and all that stuff.
     
  17. Jan 28, 2010 #16

    tom.stoer

    User Avatar
    Science Advisor

    Re: Evidence

    I know.

    But as far as I know there is not even a definition for the n-loop amplitude in superstring theory, not to mention a proof of its finiteness.
     
  18. Jan 28, 2010 #17

    arivero

    User Avatar
    Gold Member

    Re: Evidence

    Well, God does not make perturbation theory, they say.
     
  19. Jan 29, 2010 #18

    tom.stoer

    User Avatar
    Science Advisor

    Re: Evidence

    So can you ask him for a non-perturbative quantization of superstring theory?
     
  20. Jan 29, 2010 #19
    Re: Evidence

    My impression is that string theory at the moment is "less" well-defined than QFT. But I think mathematicians say that QFT is not completely well-defined either. Of course, QFT has an impressive history of achievements.

    Torquil
     
    Last edited: Jan 29, 2010
  21. Jan 29, 2010 #20

    tom.stoer

    User Avatar
    Science Advisor

    Re: Evidence

    To make this a precise statement: There are two reasons to believe in a theory:
    1) it reproduces / post-dicts known facts and predicts (correctly!) new phenomena
    2) it looks like a fundamantal, consistent and "appealing" mathematical concept
    Of course 2) use useless w/o 1)

    1) is true for quantum mechanics, the standard model etc.
    1) and 2) is true for general relativity
    Of course for 2) it's somehow a matter of taste

    String theory fails according to 1) It does neither post-dict well-known facts (it failes to reproduce the standard model, but it comes close to it) and it makes no new predictions (there are predictions which have to be hidden, e.g. 10 dim space-time)

    So we are left with 2) Here the claim is that string theory overcomes the usual difficulties of quantum field theory in the sense that it is manifestly finite = free of divergences. Unfortunately there is no proof!
    a) there is no fully understood non-perturbative quantization scheme
    b) there is no definition of a perturbative quantization scheme beyond a few (2) loops. I studied a paper regarding the 3-and 4-loop amplitude a few month ago, but the results seemed to be incomplete). There is no proof of its finiteness, either.

    So we are left with the assurance that in the furture (when ?) 1) will turn out to be true; and we are left with the claim that string theory is "appealing" according 2). Unfortunately facts and proofs are missing.

    I am no expert in string theory. What I see is that they are working rather hard to make progress with 1), especially the F-theory approach comes quite close to the MSSM. But I am missing results from 2)
     
  22. Jan 29, 2010 #21

    atyy

    User Avatar
    Science Advisor

    Re: Evidence

    Would string theory be "less" well defined than QFT if it had had experimental success already?
     
  23. Jan 29, 2010 #22
    Re: Evidence

    There are so many attempts, to my knowledge this is the best example of "proof by exhaustion of the audience". I would however like to emphasize, at this point it is not a problem of whether string theory can reproduce low energy physics. It certainly can, in many ways. The problem is that doing so requires quite some tuning, choices must be made which eventually do not allow for a satisfactory "explanation". So, there is no sense of "uniqueness", but I doubt one can claim that "the MSSM cannot be reproduced" : there are simply too many articles and PhD thesis out there claiming to do so, and one would have to spend their entire life refuting them.

    As for predictions in string theory, one could argue, perhaps more convincingly, that supersymmetry and additional dimensions are required. In any case, they are required in the vast majority of string models, even if one can cook more "exotic" solutions (or less explored parts of the landscape) with 4D or no supersymmetry on the world-sheet.
     
  24. Jan 29, 2010 #23

    arivero

    User Avatar
    Gold Member

    Re: Evidence

    A part of the history of string theory is to use the lack of fit with the standard model to justify the abandon of an area and the rise of another. Of course they move from an area of research to another for a veriety of reasons, mostly an hibrid of sociology and productivity.

    As for F-theory, I find its adoption intriguing. It was known since Bailin and Love works that a full reproduction, in Kaluza Klein, of the standard model charges required to use 8 extra dimensions. I think -but I can be wrong- that the intuition is that you need to have an extra U(1) for the B-L charge, which appears both in Weinberg model and in Pati Salam, but it need to be fully broken. Again intuitively, full broken amounts to infinitesimal extra dimension (or, infinite mass of the carrier). So the insight with kaluza klein fits with the F-Theory.

    And it should not. Because string theory, and with it F-theory, does not get all the gauge groups from space-time.
     
    Last edited: Jan 29, 2010
  25. Jan 29, 2010 #24

    atyy

    User Avatar
    Science Advisor

    Re: Evidence

    In Zwiebach's text (I'm not sure which edition) he says that string theory has a problem with the Higgs, and as of 2007, Distler said "If we should be disturbed by anything, it is that, out of the plethora of string vacua found to date, none of them looks sufficiently like our world, rather than that there are too many that do." http://golem.ph.utexas.edu/~distler/blog/archives/001200.html Has the situation changed since then, or do you think they disagreed that with those works claiming to come close enough to the MSSM?
     
  26. Jan 29, 2010 #25

    Haelfix

    User Avatar
    Science Advisor

    Re: Evidence

    There are a lot of dead ends in stringy phenomenology where you can get a lot or most of the features of the standard model, and then for one reason or the other the rest is either wrong or (more commonly) out of calculational control. Situations where you can say "in principle this might be the vacua of the real world, but we simply can't reliably compute what this superpotential tells us for say the low energy values of the CKM matrix". Often we are talking about ridiculously difficult calculations, that are outside of analytic or even approximate control.

    So a lot of model building focuses on schemes where such calculations are possible as opposed to the most aesthetically pleasing and simpler ones. But then nature doesn't really care what is or is not technically hard for humans either.

    The veil is thick in general with stringy model building and the real trick is figuring out where to even look before wading into a multiyear calculation.
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook