MHB Ideals of a Residue Class Ring- Ring Isomorphism

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading R. Y. Sharp: Steps in Commutative Algebra.

In Chapter 2: Ideals on page 32 we find Exercise 2.40 which reads as follows:

-----------------------------------------------------------------------------------------------

Let I, J be ideals of the commutative ring R such that $$ I \subseteq J $$.

Show that there is a ring isomorphism

$$ \xi \ : (R/I) \ / \ (J/I) \to R/J $$

for which

$$ \xi ((r + I) + J/I ) = r + J $$ for all $$r \in R$$.

----------------------------------------------------------------------------------------------

Can someone please help me get started on this exercise.

Also ... problem ... considering J/I ... for a factor ring, J is usually a ring, so what does J/I mean? I assume that since ideals are subgroups under addition, then we can make sense of this by interpreting J/I as a factor group ... Is this the case ... can someone please confirm that my view on this matter is valid ...

As indicated above i would be grateful for some help to get started ...

Peter
 
Physics news on Phys.org
This is also known as "The Second Isomorphism Theorem" and is a direct analogue of a similar result for groups.

If $J$ is a subring of $R$ containing an ideal $I$ of $R$, it is clear to see that $I$ is also an ideal of $J$. So, yes, $J/I$ is just a "smaller" factor ring, and it should be clear that it is a subring of $R/I$.

You see, every ideal IS a subring (if one stipulates that subrings need not contain unity):

Recall that a subring has to be closed under multiplication. Well if $a\in J$, and $x \in J$, then a fortiori (loosely translated: "all the more so", literally, "from the stronger" an abbreviation of "a fortiori argumento" -from the stronger argument), $a \in R$, and since $J$ is an ideal, $ax \in J$, hence $J$ is closed under multiplication.

However, a subring need not be an ideal: consider the ring $\Bbb Z \times \Bbb Z$ with the multiplication:

$(a,b)(a',b') = (aa',bb')$.

The set $\Delta \Bbb Z = \{(k,k)\}$ is a subring of $\Bbb Z \times \Bbb Z$, but it is NOT an ideal; Let $a,k \neq 0$, then:

$(a,0)(k,k) = (ak,0) \not \in \Delta \Bbb Z$.

Now, we are already given a definition of $\xi$, but as with any mapping defined on a quotient ring via elements of the ring, we must ensure that it is "well-defined", i.e; that it is constant on any coset. Because $\xi$ is defined on a "coset of a coset" we have to do this TWICE:

First: suppose $(r + I) + J/I = (r' + I) + J/I$ (as cosets in $(R/I)/(J/I)$).

This means that $(r + I) - (r' + I) \in J/I$

But also: in $J/I$, we have:

$(r + I) - (r' + I) = (r - r') + I$

so if this coset is in $J/I$, we must have that $r - r' \in J$, so $r + J = r' + J$ in $R/J$.

But THAT means that $\xi((r+I) + J/I)) = r + J = r' + J = \xi((r'+I) + J/I)$

whenever $(r + I) + J/I = (r' + I) + J/I$, that is: $\xi$ is well-defined.

It is then trivial that $\xi$ is surjective, since for every $r + J \in R/J$, we have the pre-image:

$(r + I) + J/I$ in $(R/I)/(J/I)$ (use the same $r$).

It, of course, remains to be seen that $\xi$ is a ring-homomorphism, which I leave to you.

I will address one final point, the kernel of $\xi$. This is, by definition:

$\{(r + I) + J/I \in (R/I)/(J/I): \xi((r + I) + J/I) = J\}$.

Since $r + J = J \iff r \in J$, this is the set:

$\{(r + I) + J/I: r \in J\}$, and this means $r+I \in J/I$, whence:

$\text{ker}(\xi) = \{J/I\}$, the 0-element of $J/I$.

Here is a painfully worked-out example:

Let $R = \Bbb Z$ and let $I = (12), J = (3)$.

Using the canonical isomorphism:

$\Bbb Z/(12) \cong \Bbb Z_{12}$ let's look at what $J/I$ is, explicitly.

To simplify the notation, we will use $[k]_{12}$ for the image of $k$ in $\Bbb Z_{12}$

under the canonical isomorphism.

Then $J/I = {[k]_{12} \in \Bbb Z_9: 3|k} = \{[0]_{12},[3]_{12},[6]_{12},[9]_{12}\}$

Then the possible cosets are:

$[0]_{12} + J/I = J/I = \{[0]_{12},[3]_{12},[6]_{12},[9]_{12}\}$
$[1]_{12} + J/I = \{[1]_{12},[4]_{12},[7]_{12},[10]_{12}\}$
$[2]_{12} + J/I = \{[2]_{12},[5]_{12},[8]_{12},[11]_{12}\}$

(we could, if we so chose, simply this notation even further by representing these cosets with double brackets: $[[k]]$, meaning first we reduce $k$ mod 12, and then reduce the resulting "integer" again mod 3 -this works on the entire cosets because 3|12, which is exactly the necessary condition we must have for (12) to be a ideal contained in (3)).

Here, our isomorphism is:

$\xi([k]_{12} + J/I) = [k]_3$

(which makes sense: $J/I$ is a finite subring of order 4, so the quotient should have order 12/4 = 3).

Sometimes this theorem is called the "freshman's theorem": you just "cancel the $I$'s".
 
Deveno said:
This is also known as "The Second Isomorphism Theorem" and is a direct analogue of a similar result for groups.

If $J$ is a subring of $R$ containing an ideal $I$ of $R$, it is clear to see that $I$ is also an ideal of $J$. So, yes, $J/I$ is just a "smaller" factor ring, and it should be clear that it is a subring of $R/I$.

You see, every ideal IS a subring (if one stipulates that subrings need not contain unity):

Recall that a subring has to be closed under multiplication. Well if $a\in J$, and $x \in J$, then a fortiori (loosely translated: "all the more so", literally, "from the stronger" an abbreviation of "a fortiori argumento" -from the stronger argument), $a \in R$, and since $J$ is an ideal, $ax \in J$, hence $J$ is closed under multiplication.

However, a subring need not be an ideal: consider the ring $\Bbb Z \times \Bbb Z$ with the multiplication:

$(a,b)(a',b') = (aa',bb')$.

The set $\Delta \Bbb Z = \{(k,k)\}$ is a subring of $\Bbb Z \times \Bbb Z$, but it is NOT an ideal; Let $a,k \neq 0$, then:

$(a,0)(k,k) = (ak,0) \not \in \Delta \Bbb Z$.

Now, we are already given a definition of $\xi$, but as with any mapping defined on a quotient ring via elements of the ring, we must ensure that it is "well-defined", i.e; that it is constant on any coset. Because $\xi$ is defined on a "coset of a coset" we have to do this TWICE:

First: suppose $(r + I) + J/I = (r' + I) + J/I$ (as cosets in $(R/I)/(J/I)$).

This means that $(r + I) - (r' + I) \in J/I$

But also: in $J/I$, we have:

$(r + I) - (r' + I) = (r - r') + I$

so if this coset is in $J/I$, we must have that $r - r' \in J$, so $r + J = r' + J$ in $R/J$.

But THAT means that $\xi((r+I) + J/I)) = r + J = r' + J = \xi((r'+I) + J/I)$

whenever $(r + I) + J/I = (r' + I) + J/I$, that is: $\xi$ is well-defined.

It is then trivial that $\xi$ is surjective, since for every $r + J \in R/J$, we have the pre-image:

$(r + I) + J/I$ in $(R/I)/(J/I)$ (use the same $r$).

It, of course, remains to be seen that $\xi$ is a ring-homomorphism, which I leave to you.

I will address one final point, the kernel of $\xi$. This is, by definition:

$\{(r + I) + J/I \in (R/I)/(J/I): \xi((r + I) + J/I) = J\}$.

Since $r + J = J \iff r \in J$, this is the set:

$\{(r + I) + J/I: r \in J\}$, and this means $r+I \in J/I$, whence:

$\text{ker}(\xi) = \{J/I\}$, the 0-element of $J/I$.

Here is a painfully worked-out example:

Let $R = \Bbb Z$ and let $I = (12), J = (3)$.

Using the canonical isomorphism:

$\Bbb Z/(12) \cong \Bbb Z_{12}$ let's look at what $J/I$ is, explicitly.

To simplify the notation, we will use $[k]_{12}$ for the image of $k$ in $\Bbb Z_{12}$

under the canonical isomorphism.

Then $J/I = {[k]_{12} \in \Bbb Z_9: 3|k} = \{[0]_{12},[3]_{12},[6]_{12},[9]_{12}\}$

Then the possible cosets are:

$[0]_{12} + J/I = J/I = \{[0]_{12},[3]_{12},[6]_{12},[9]_{12}\}$
$[1]_{12} + J/I = \{[1]_{12},[4]_{12},[7]_{12},[10]_{12}\}$
$[2]_{12} + J/I = \{[2]_{12},[5]_{12},[8]_{12},[11]_{12}\}$

(we could, if we so chose, simply this notation even further by representing these cosets with double brackets: $[[k]]$, meaning first we reduce $k$ mod 12, and then reduce the resulting "integer" again mod 3 -this works on the entire cosets because 3|12, which is exactly the necessary condition we must have for (12) to be a ideal contained in (3)).

Here, our isomorphism is:

$\xi([k]_{12} + J/I) = [k]_3$

(which makes sense: $J/I$ is a finite subring of order 4, so the quotient should have order 12/4 = 3).

Sometimes this theorem is called the "freshman's theorem": you just "cancel the $I$'s".
Thanks for the help Deveno!

Just carefully working through this now.

Peter
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top