- #1

Ad VanderVen

- 169

- 13

- TL;DR Summary
- Identification of a probability density function.

I have the following probability density function:

$$f(x) = \frac{2^{\frac{1}{2}~\frac{a_{0}-c_{0}}{a_{0}}}~a_{1}^{(-\frac{1}{2}~\frac{a_{0}+c_{0}}{a_{0}})}~c_{1}^{(\frac{1}{2}~\frac{a_{0}+c_{0}}{a_{0}})}~x^{\frac{c_{0}}{a_{0}}}~e^{-\frac{1}{2}~\frac{c_{1}~x^{2}}{a_{1}}}}{\Gamma(\frac{1}{2}~\frac{a_{0}+c_{0}}{a_{0}})}$$

Is this a known probability density function?

$$f(x) = \frac{2^{\frac{1}{2}~\frac{a_{0}-c_{0}}{a_{0}}}~a_{1}^{(-\frac{1}{2}~\frac{a_{0}+c_{0}}{a_{0}})}~c_{1}^{(\frac{1}{2}~\frac{a_{0}+c_{0}}{a_{0}})}~x^{\frac{c_{0}}{a_{0}}}~e^{-\frac{1}{2}~\frac{c_{1}~x^{2}}{a_{1}}}}{\Gamma(\frac{1}{2}~\frac{a_{0}+c_{0}}{a_{0}})}$$

Is this a known probability density function?