Hello, this is my first post. I am a programmer from Regina, SK Canada who likes to learn about Physics when I have spare time.(adsbygoogle = window.adsbygoogle || []).push({});

My question:

Does anyone know the name of the following solution for the perihelion shift? I do not know who to attribute it to. Thank you for your time.

For Mercury, when the orbit is simplied to being circular:

[tex]t &=& 88\times24\times60\times60[/tex]

[tex]r &=& \frac{perihelion + aphelion}{2}[/tex]

[tex]v &=& \frac{2\pi r}{t}[/tex]

[tex]n &=& 2\pi[1 - \cos(\arcsin(v/c))][/tex]

[tex]\delta &=& n\times360\times60\times60\times415 &=& 43.1[/tex]

For Earth:

[tex]t &=& 365\times24\times60\times60[/tex]

...

[tex]\delta &=& n\times360\times60\times60\times100 &=& 4[/tex]

I arrived at the preceding solution while trying to verify if the following acceleration equation works for simulating the transverse gravitation of bodies travelling at less than the speed of light:

[tex]a &=& \frac{GM[2 - \cos(\arcsin(v/c))]}{r^2}[/tex]

- Shawn

P.S. I will be buying my copy of Gravitation by Misner, et al. soon. Does anyone recommend any other books on this subject of General Relativity?

P.P.S. I already have my copy of Relativity: The Special and the General Theory by Albert Einstein, which includes the equation I used to verify the preceding results:

[tex]\frac{24\pi^3a^2}{T^2c^2(1 - e^2)}[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Identifying a Perihelion Shift Solution

**Physics Forums | Science Articles, Homework Help, Discussion**