mhill
- 180
- 1
it is true in general that the sum (density of states for a physicst)
\sum_{n=0}^{\infty} \delta (x- \gamma _{n})
is related to the value \frac{ \zeta '(1/2+is)}{\zeta (1/2+is)}+\frac{ \zeta '(1/2-is)}{\zeta (1/2-is)}
here the 'gamma' are the imaginary parts of the non-trivial zeros of Riemann zeta function
\sum_{n=0}^{\infty} \delta (x- \gamma _{n})
is related to the value \frac{ \zeta '(1/2+is)}{\zeta (1/2+is)}+\frac{ \zeta '(1/2-is)}{\zeta (1/2-is)}
here the 'gamma' are the imaginary parts of the non-trivial zeros of Riemann zeta function