MHB If 2 columns are identical is there infinite solutions

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Columns Infinite
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{45.4.T40}$
Suppose that the coefficient matrix of a consistent system of linear equations has two columns that are identical. Prove that the system has infinitely many solutions. Refer to the DTSLS Diagram
\item using augmented matrix A for example with c1 and c3 identical
$\left[
\begin{array}{rrr|r}
1&4&1&12\\
2&3&2&14\\
3&2&3&16
\end{array}\right]$
eMH returned the following RREF which show c1 and c3 as pivot columns
this is a violation of RREF
$\text{REFF}(A)=\left[ \begin{array}{rrr|r}
1 & 0 & 1 & 4 \\
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array} \right]$
the matrix was dirived from the the possible set of $x_1=1\ x_2=2\ x_3=3$
a little perplexed as to whar we need to do when one row is all zero's after RREF
also as a result of RREF can this be just an 2x4 augmented matrix, r<n
this is supposed to be a proof which I am not good at
here is the DTSLS Diagram we are supposed to us

03.png
 
Last edited:
Physics news on Phys.org
$\left[
\begin{array}{rrr|r}
1&4&1&12\\
2&3&2&14\\
3&2&3&16
\end{array}\right]$
Subtract twice the first row from the second row and three times the first row from the third row:
$\left[\begin{array}{rrr|r} 1&4 & 1 & 12 \\ 0 & -5 & 0 & -10 \\ 0 & -10 & 0 & -20\end{array}\right]$

Divide the second row by -5, subtract 4 times the second row from the first row, and add 10 times the first row to the third row:
$\left[\begin{array}{rrr|r} 1 & 0 & 1 & 4 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right]$
Yes that is what "eMH" (whatever that is) gave you. Now, what does it mean?

Rather than referring to a diagram, write it as "x, y, z" equations.

The top row, "1 0 1 | 4" gives the equation x+ z= 4.
The second row, "0 1 0 | 2" gives the equation y= 2.
The third row, "0 0 0 | 0" gives 0= 0 so no equation at all.

y must equal 2 but x and z can be any pair of numbers that add to 4:
x= 0, y= 2, z= 4
x= 1, y= 2, z= 3
x= 2, y= 2, z= 2
x= 3, y= 2, z= 1
x= 4, y= 2, z= 0
x= 5, y= 2, z= -1
etc.

Yes, there are an infinite number of solutions.
 
I have no idea what "r" and "n" mean and they do not appear in your original post.
 
r = rows
n = columns

it is usually a very common notation for linear algebra
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...

Similar threads

Replies
2
Views
3K
Replies
4
Views
2K
Replies
3
Views
1K
Replies
2
Views
966
Replies
1
Views
1K
Replies
5
Views
1K
Replies
7
Views
1K
Replies
7
Views
1K
Back
Top