Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I If an object is not quantized does it have a wave function?

  1. Dec 29, 2016 #1
    Is there a relationship between the quantization of an object and its wave function? If an object isn't quantized does it have a wave function? For example, in string theory branes are not quantized, so do they have wave functions?
     
  2. jcsd
  3. Dec 29, 2016 #2

    hilbert2

    User Avatar
    Science Advisor
    Gold Member

    Objects are not quantized, measurable properties of objects can be. If you have an electron that is confined inside a finite space, its kinetic energy is quantized and can have only certain values. On the other hand, the kinetic energy of an unconfined free electron is not quantized. In both cases the state of the electron can be described with a wave function, but the free electron wavefunction doesn't have to be normalizable like the wavefunction of a confined electron.
     
  4. Dec 29, 2016 #3
    I take it a free electron does not have to be normalised because free electrons do not exist anywhere.
     
  5. Dec 29, 2016 #4

    DrClaude

    User Avatar

    Staff: Mentor

    That's not correct. The wave function must always be normalizable, which is why a plane wave is not a valid state for an electron, and a superposition of plane waves (wave packet) is needed to correctly describe the state of a free particle.
     
  6. Dec 29, 2016 #5
    Not to be pedantic but is it correct to say a wave packet is not a free particle because it has to be in a potential to be in a superposition state.

    Anyhoo good luck finding a region in the universe that is field free to support a free electron. Free particles seem mythical in the strict sense in my amateur opinion.
     
  7. Dec 29, 2016 #6

    Nugatory

    User Avatar

    Staff: Mentor

    It's easy to find free electrons: CRT displays, pre-flatscreen TV sets, vacuum tubes, lightning, static discharges.... Electrons are so mobile that free electrons are responsible for almost all the transfers of electric charge that we see in daily life.
     
    Last edited: Dec 29, 2016
  8. Dec 29, 2016 #7

    Nugatory

    User Avatar

    Staff: Mentor

    Not correct. A particle is free if its total energy (kinetic plus potential) is positive when using the convention that the potential at infinity is zero.

    Whether it's free or bound has nothing to do with superposition, and there is no such thing as a quantum state that is not a superposition in some basis.
     
  9. Dec 29, 2016 #8
    I have never seen a formal definition of free, I figured it must be free of all fields which excludes even weak fields relative the particles energy.

    I guess you are saying an electron is free if it is ionised. Not trying to make up my own definitions but free is a pretty in accurate term the way you have defined it.

    All electrons are in a gravity energy well at least, hence minimally bound.

    Oh well my definition is wrong, I learned something.

    If I was more adept I would like to calculate how gravity effects the spectra of a particle in a box problem, know any links for that?

    BTW will start a separate thread re superposition.
     
    Last edited: Dec 29, 2016
  10. Dec 30, 2016 #9

    hilbert2

    User Avatar
    Science Advisor
    Gold Member

    To put it more exactly, in the case of a confined electron, unnormalizable position repr. wavefunctions don't appear even as a mathematical tool in the eigenfunction expansions of the wavepackets.
     
  11. Dec 30, 2016 #10

    Demystifier

    User Avatar
    Science Advisor

  12. Dec 30, 2016 #11

    hilbert2

    User Avatar
    Science Advisor
    Gold Member

    That's quite cool... So the positivity of this classical wavefunction (mentioned in the abstract) prevents interference phenomena from happening in the classical case?
     
  13. Dec 30, 2016 #12

    Demystifier

    User Avatar
    Science Advisor

    Exactly!
     
  14. Dec 30, 2016 #13

    Mentz114

    User Avatar
    Gold Member

    More precisely there cannot be interference because probabiity is assumed to follow normalised matter density ##\rho##. The mapping from phase space to probability is not the same as in QT.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: If an object is not quantized does it have a wave function?
Loading...