If p##\geq##5 is a prime number, show that p^{2}+2 is composite?

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Composite Prime
Click For Summary
For any prime number p greater than or equal to 5, it can be shown that p^2 + 2 is composite. The proof utilizes the Division Algorithm, demonstrating that p can only take the forms 6k+1 or 6k+5. In both cases, the expression p^2 + 2 is factored to show it is divisible by 3, confirming its composite nature. The discussion also emphasizes the utility of modulo arithmetic in such proofs. Overall, the argument is validated and encourages the use of modular concepts in mathematical reasoning.
Math100
Messages
816
Reaction score
229
Homework Statement
If p##\geq##5 is a prime number, show that p^{2}+2 is composite.
[Hint: p takes one of the forms 6k+1 or 6k+5.]
Relevant Equations
None.
Proof: Suppose p##\geq##5 is a prime number.
Applying the Division Algorithm produces:
p=6k, p=6k+1, p=6k+2, p=6k+3, p=6k+4 or p=6k+5 for some k##\in\mathbb{Z}##.
Since p##\geq##5 is a prime number,
it follows that p cannot be divisible by 2 or 3 and p must be odd.
Thus, p takes one of the forms 6k+1 or 6k+5.
Now we consider two cases.
Case #1: Suppose p=6k+1.
Then we have p^{2}+2=(6k+1)^{2}+2
=36k^{2}+12k+3
=3(12k^{2}+4k+1)
=3m,
where m=12k^{2}+4k+1 is an integer.
Thus, p^{2}+2 is composite.
Case #2: Suppose p=6k+5.
Then we have p^{2}+2=(6k+5)^{2}+2
=36k^{2}+60k+27
=3(12k^{2}+20k+9)
=3m,
where m=12k^{2}+20k+9 is an integer.
Thus, p^{2}+2 is composite.
Therefore, if p##\geq##5 is a prime number, then p^{2}+2 is composite.

Above is my proof for this problem. Can anyone please verify/review to see if this is correct?
 
Physics news on Phys.org
It looks fine. Slicker is
$$p = \pm 1 \ ( mod \ 6) \ \Rightarrow \ p^2 +2 = 3 \ (mod \ 6)$$$$\Rightarrow \ p^2+2 = 3k$$
 
  • Like
Likes Orodruin and Math100
PeroK said:
It looks fine. Slicker is
$$p = \pm 1 \ ( mod \ 6) \ \Rightarrow \ p^2 +2 = 3 \ (mod \ 6)$$$$\Rightarrow \ p^2+2 = 3k$$
Thank you.
 
You should definitely be using modulo arithmetic more. It's not like it's something that takes a lot to learn. It's the sort of thing that some people use before they realize it's a thing that gets taught in maths classes.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...